DOI QR코드

DOI QR Code

Effect of Electrolytic Condition on Composition of Zn-Co Alloy Plating

Zn-Co 합금도금의 조성에 미치는 전해조건의 영향

  • Kang, Soo Young (Dept. of Metallurgical & Material Engineering, lnha Technical College)
  • 강수영 (인하공업전문대학교 금속재료과)
  • Received : 2017.10.10
  • Accepted : 2017.11.20
  • Published : 2017.11.28

Abstract

The electrodeposition of Zn on the automotive parts has been adapted However, because Zn electrodeposit needs to increase thickness for corrosion protection, it has problem of destruction of electrodeposit Zn-based electrodeposit have teen studied for corrosion protection and decreasing electrodeposit thickness. Especially; Zn-Co electrodeposit have much attention In this study, the Composition of Zn-Co electrodeposit in various manufacturing condition such as temperature, current density and electrolyte content was investigated to understand effect of electrolysis condition on Co content of specimen. The results were explained by cathode overvoltage and diffusion coefficient. As the current density increases, the electrolyte temperature decreases, and as the electrolyte concentration decreases, the overvoltage of the cathode increases. As the overvoltage of the cathode increases, the concentration polarization becomes more important than the activation polarization. Concentration polarization is determined by the diffusion of the mass transfer in the diffusion layer. In a constant concentration polarization, a large amount of elements with a large diffusion coefficient is diffused. That is, as the overvoltage of the cathode increases, the Zn content having a large diffusion coefficient increases.

자동차 부품에 Zn의 전기도금이 적용되고 있다. Zn 도금은 내식성을 증가시키기 위해 두께를 증가시키고 있다. 도금층의 두께가 증가함에 따라 전기도금 층이 파괴되는 문제가 제기되고 있다. Zn계 합금의 전기도금은 내부식성 향상 및 도금 두께 감소를 위해 연구되어 있다. 여러 합금 도금 중에 Zn-Co 합금 도금은 많은 관심을 받고 있다. 본 연구에서는 온도, 전류 밀도 및 전해용액 속 Co 함량과 같은 다양한 제조 조건에서 Zn-Co 전착의 조성을 조사하여 시료의 Co 함량에 대한 전기도금 조건의 영향을 파악하였다. 그 결과는 음극 과전압 및 확산 계수에 의해 설명하였다. 전류 밀도가 증가하고, 전해액 온도가 감소하고, 전해액 농도가 감소함에 따라 음극의 과전압이 증가한다. 음극의 과전압이 증가함에 따라 활성화분극보다 농도분극이 중요하게 된다. 농도분극은 확산 층 내에서 물질 전달은 확산에 의해 결정된다. 일정한 농도분극에서는 확산계수가 큰 원소가 다량 확산하게 된다. 즉 음극의 과전압이 증가함에 따라 확산계수가 큰 Zn 함량이 증가한다.

Keywords

References

  1. Rashwan S. M., "Electrodeposition and characterization of thin layers of Zn Co alloys obtained from glycinate baths." Journal of applied electrochemistry, Vol.33, No. 11, pp.1035-1042, 2003 https://doi.org/10.1023/A:1026280109296
  2. Chen, Po-Yu. and I-Wen Sun. "Electrodeposition of cobalt and zinc- cobalt alloys from a lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt." Electrochimica Acta Vol. 46, No. 8, pp. 1169-1177, 2001. https://doi.org/10.1016/S0013-4686(00)00703-9
  3. Mindowicz J., C. Capel-Boute, and C. Decroly. "Inhibition effect of zinc on the cathodic deposition of cobalt?II. Potentiodynamic and intensiodynamic curves in chloride solutions.." Electrochimica Acta J. Kor. Inst. Surf. Eng., Vol.10, No. 9, pp. 901-904, 1965.
  4. Gomez E., X. Alcobe, and E. Valles. "Characterisation of zinc+ cobalt alloy phases obtained by electrodeposition." Journal of Electroanalytical Cemihstry, Vol.505, No. 1, pp. 54-61, 2001. https://doi.org/10.1016/S0022-0728(01)00450-8
  5. Narasimhamurthy V., and B. S. Sheshadri. "Electrodeposition of zinc-cobalt alloy from an alkaline sulfate bath containing triethanolamine and gelatin." Metal finishing, Vol. 96, No. 4, pp. 24-27, 1998.
  6. Fei, Jing-Yin, and G. D. Wilcox. "Electrodeposition of Zn?Co alloys with pulse containing reverse current." Electrochimica Acta, Vol. 50, No. 13, pp. 2693-2698, 2005. https://doi.org/10.1016/j.electacta.2004.11.014
  7. Yunus M., C. Capel-Boute, and C. Decroly. "Inhibition effect of zinc on the cathodic deposition of cobalt?I. Electrochemical and structural observations in sulphate solutions." Electrochimica acta, Vol. 10, No. 9, pp. 885-900, 1965. https://doi.org/10.1016/0013-4686(65)80001-9
  8. Higashi K., "Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt." Journal of the Electrochemical Society, Vol. 128, No. 10, pp. 2081-2085, 1981. https://doi.org/10.1149/1.2127194
  9. Yan H., "A Model for Nanolaminated Growt.h Patterns in Zn and Zn Co Electrodeposits." Journal of The Electrochemical Society, Vol. 143, No. 5, pp. 1577-1583, 1996. https://doi.org/10.1149/1.1836682
  10. Lodhi Z. F., "Electrodeposition of Zn Co and Zn Co Fe alloys from acidic chloride electrolytes." Surface and Coatings Technology, Vol. 202, No. 1, pp. 84-90., 2007. https://doi.org/10.1016/j.surfcoat.2007.04.070
  11. Ramanauskas R.. "Effect of pulse plating on the composition and corrosion properties of Zn Co and Zn Fe alloy coatings." chemija, Vol. 19, No. 1, pp. 7-13, 2008.
  12. Ortiz-Aparicio J. L., "Electrodeposition of zinc?cobalt alloy from a complexing alkaline glycinate bath." Electrochimica Acta, Vol. 52, No. 14, pp. 4742-4751, 2007. https://doi.org/10.1016/j.electacta.2007.01.010
  13. Mouanga M., L. Ricq, and P. Berot. "Electrodeposition and characterization of zinc cobalt alloy from chloride bath; influence of coumarin as additive." Surface and Coatings Technology, Vol. 202, No. 9, pp. 1645-1651, 2008. https://doi.org/10.1016/j.surfcoat.2007.07.023
  14. Wang L., "Electrochemical corrosion behavior of nanocrystalline Co coatings explained by higher grain boundary density." Electrochimica acta, Vol. 52, No. 13, pp. 4342-4350, 2007. https://doi.org/10.1016/j.electacta.2006.12.009
  15. Gharahcheshmeh, M. Heydari, and M. Heydarzadeh Sohi. "Study of the corrosion behavior of zinc and Zn?Co alloy electrodeposits obtained from alkaline bath using direct current." Materials Chemistry and Physics, Vol. 117, No. 2, pp. 414-421, 2009. https://doi.org/10.1016/j.matchemphys.2009.06.009