DOI QR코드

DOI QR Code

The Sanguinarine Apoptosis Induction of Hep3B Human Hepatocellular Carcinoma Cells is Dependent on the Activation of Caspase

Sanguinarine에 의한 Hep3B 인체 간암세포의 apoptosis 유도에 관한 연구

  • Han, Min Ho (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Choi, Sung Hyun (Department of System Management, Korea Lift College) ;
  • Hong, Su Hyun (Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine) ;
  • Park, Dong Il (Department of Internal Medicine, Dongeui University College of Korean Medicine) ;
  • Choi, ung Hyun (Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine)
  • 한민호 (국립해양생물자원관) ;
  • 최성현 (한국승강기대학교 승강기시스템관리과) ;
  • 홍수현 (동의대학교 한의과대학 생화학교실 및 근.골격계질환제어 융합연구실) ;
  • 박동일 (동의대학교 한의과대학 내과학교실) ;
  • 최영현 (동의대학교 한의과대학 생화학교실 및 근.골격계질환제어 융합연구실)
  • Received : 2017.07.21
  • Accepted : 2017.11.15
  • Published : 2017.11.30

Abstract

Sanguinarine is a benzophenanthridine alkaloid derived from the roots of Sanguinaria canadensis L., which is used for the purpose of treating various diseases. Although studies of anticancer activities have been performed using various cancer cell lines, the phenomenon of inducing apoptosis in cancer cells by using sanguinarine requires more research. Therefore, this study investigated the anti-cancer activities and related mechanisms of sanguinarine used with Hep3B human hepatocellular carcinoma cells in terms of the regulation of apoptosis. Sanguinarine inhibited the proliferation of Hep3B cells in a concentration-dependent manner, which was associated with the induction of apoptosis. Sanguinarine also increased the activity of caspase-3, which is a typical effector caspase, and the activities of caspase-8 and caspase-9, which are key when initiating extrinsic and intrinsic apoptosis pathways, respectively. In addition, sanguinarine increased the expression of death receptor-related genes and pro-apoptotic BAX, which belongs to the Bcl-2 family, while suppressing the expression of anti-apoptotic Bcl-2. Sanguinarine promoted the truncation of Bid and enhanced the release of cytochrome c from the mitochondria to the cytoplasm due to a loss of mitochondrial membrane potential. Furthermore, the reduction of a survival rate that was induced by sanguinarine and the induction of apoptosis disappeared with the inhibition of artificial caspase activity. Therefore, the results of the study indicated that sanguinarine-induced apoptosis in Hep3B cells involves both extrinsic and intrinsic pathways; such apoptosis is a caspase-dependent phenomenon.

Sanguinarine은 다양한 목적으로 사용되고 있는 Sanguinaria canadensis L.의 뿌리에서 유래된 benzophenanthridine alkaloid 계열 물질중의 하나이다. 그동안 sanguinarine의 다양한 약리학적인 효능이 알려져 왔고, 항암활성에 대한 연구도 여러 암세포들을 대상으로 수행되어 왔다. 그러나 sanguinarine에 의한 암세포의 apoptosis 유도에 대한 현상은 여전히 많은 부분에서 연구의 대상으로 남아 있다. 본 연구는 Hep3B 인체 간암세포를 대상으로 sanguinarine의 항암활성에 대한 추가적인 자료를 제시하기 위하여 수행되었다. 본 논문의 결과에 의하면, sanguinarine은 처리 농도 의존적으로 Hep3B 세포의 증식을 억제하였으며, 이는 apoptosis 유도와 연관성이 있었다. Sanguinarine은 두 가지 apoptosis 경로인 extrinsic 및 intrinsic 경로의 개시 initiator caspase인 caspase-8 및 caspase-9 뿐만 아니라 대표적인 effector caspase인 caspase-3의 활성을 증가시켰고, caspase-3의 기질인 PARP의 분절을 유발하였다. 아울러 sanguinarine은 DR-related 유전자들의 발현을 부분적으로 증가시켰으며, Bcl-2 family에 속하는 pro-apoptotic Bax의 발현을 증가시킨 반면, anti-apoptotic Bcl-2의 발현은 억제시켰다. 또한 sanguinarine은 Bid의 truncation을 촉진하였고, MMP의 소실에 따른 cytochrome c를 미토콘드리아에서 세포질로의 이동을 증가시켰다. 그리고 sanguinarine에 의한 apoptosis 유도 및 세포 증식율 억제 현상이 caspase의 활성을 인위적으로 억제하였을 경우, 모두 사라졌다. 따라서 sanguinarine에 의하여 유도하는 Hep3B 세포의 apoptosis 유발에는 caspase 의존적으로 extrinsic 및 intrinsic 경로가 모두 관여하고 있음을 알 수 있었다.

Keywords

References

  1. Ahsan, H., Reagan-Shaw, S., Breur, J. and Ahmad, N. 2007. Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulationsin Bcl-2 family proteins. Cancer Lett. 249, 198-208. https://doi.org/10.1016/j.canlet.2006.08.018
  2. Basini, G., Bussolati, S., Santini, S. E. and Grasselli, F. 2007. Sanguinarine inhibits VEGF-induced angiogenesis in a fibrin gel matrix. Biofactors 29, 11-18. https://doi.org/10.1002/biof.5520290102
  3. Billen, L. P., Shamas-Din, A. and Andrews, D. W. 2008. Bid: a Bax-like BH3 protein. Oncogene 27, S93-104. https://doi.org/10.1038/onc.2009.47
  4. Cecen, E., Altun, Z., Ercetin, P., Aktas, S. and Olgun, N. 2014. Promoting effects of sanguinarine on apoptotic gene expression in human neuroblastoma cells. Asian Pac. J. Cancer Prev. 15, 9445-9451. https://doi.org/10.7314/APJCP.2014.15.21.9445
  5. Chang, M. C., Chan, C. P., Wang, Y. J., Lee, P. H., Chen, L. I., Tsai, Y. L., Lin, B. R., Wang, Y. L. and Jeng, J. H. 2007. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization. Toxicol. Appl. Pharmacol. 218,143-151. https://doi.org/10.1016/j.taap.2006.10.025
  6. Choi, W. Y., Kim, G. Y., Lee, W. H. and Choi, Y. H. 2008. Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen species-mediated mitochondrial pathway. Chemotherapy 54, 279-287. https://doi.org/10.1159/000149719
  7. Choi, Y. H., Choi, W. Y., Hong, S. H., Kim, S. O., Kim, G. Y., Lee, W. H. and Yoo, Y. H. 2009. Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chem. Biol. Interact. 179, 185-191. https://doi.org/10.1016/j.cbi.2008.11.009
  8. Cragg, G. M. and Newman, D. J. 2005. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 100, 72-79. https://doi.org/10.1016/j.jep.2005.05.011
  9. Decker, P. and Muller, S. 2002. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr. Pharm. Biotechnol. 3, 275-283. https://doi.org/10.2174/1389201023378265
  10. Eun, J. P. and Koh, G. Y. 2004. Suppression of angiogenesis by the plant alkaloid, sanguinarine. Biochem. Biophys. Res. Commun. 317, 618-624. https://doi.org/10.1016/j.bbrc.2004.03.077
  11. Firatli, E., Unal, T., Onan, U. and Sandalli, P. 1994. Antioxidative activities of some chemotherapeutics. A possible mechanism in reducing gingival inflammation. J. Clin. Periodontol. 21, 680-683. https://doi.org/10.1111/j.1600-051X.1994.tb00786.x
  12. Frankos, V. H., Brusick, D. J., Johnson, E. M., Maibach, H. I., Munro, I., Squire, R. A. and Weil, C. S. 1990. Safety of Sanguinaria extract as used in commercial toothpaste and oral rinse products. J. Can. Dent. Assoc. 56, S41-47.
  13. Fridlender, M., Kapulnik, Y. and Koltai, H. 2015. Plant derived substances with anti-cancer activity: from folklore to practice. Front. Plant Sci. 6, 799.
  14. Fulda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811. https://doi.org/10.1038/sj.onc.1209608
  15. Gaziano, R., Moroni, G., Bue, C., Miele, M. T., Sinibaldi-Vallebona, P. and Pica, F. 2016. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives. World J. Gastrointest. Oncol. 8, 30-39. https://doi.org/10.4251/wjgo.v8.i1.30
  16. Gupta, S. C., Kim, J. H., Prasad, S. and Aggarwal, B. B. 2010. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 29, 405-434. https://doi.org/10.1007/s10555-010-9235-2
  17. Hajra, K. M. and Liu, J. R. 2004. Apoptosome dysfunction in human cancer. Apoptosis 9, 691-704. https://doi.org/10.1023/B:APPT.0000045786.98031.1d
  18. Han, M. H., Kim, G. Y., Yoo, Y. H. and Choi, Y. H. 2013. Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicol. Lett. 220, 157-166. https://doi.org/10.1016/j.toxlet.2013.04.020
  19. Han, M. H., Kim, S. O., Kim, G. Y., Kwon, T. K., Choi, B. T., Lee, W. H. and Choi, Y. H. 2007. Induction of apoptosis by sanguinarine in C6 rat glioblastoma cells is associated with the modulation of the Bcl-2 family and activation of caspases through downregulation of extracellular signal-regulated kinase and Akt. Anticancer Drugs 18, 913-921.
  20. Han, M. H., Park, C., Jin, C. Y., Kim, G. Y., Chang, Y. C., Moon, S. K., Kim, W. J. and Choi, Y. H. 2013. Apoptosis induction of human bladder cancer cells by sanguinarine through reactive oxygen species-mediated up-regulation of early growth response gene-1. PLoS One 8, e63425. https://doi.org/10.1371/journal.pone.0063425
  21. Han, M. H., Yoo, Y. H. and Choi, Y. H. 2008. Sanguinarineinduced apoptosis in human leukemia U937 cells via Bcl-2 downregulation and caspase-3 activation. Chemotherapy 54, 157-165. https://doi.org/10.1159/000140359
  22. Hata, A. N., Engelman, J. A. and Faber, A. C. 2015. The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475-487. https://doi.org/10.1158/2159-8290.CD-15-0011
  23. Hong, S. J., Jeong, S. S. and Song, K. B. 2005. Effects of sanguinaria in fluoride-containing dentifrices on the remineralisation of subsurface carious lesion in vitro. Int. Dent. J. 55, 128-132. https://doi.org/10.1111/j.1875-595X.2005.tb00309.x
  24. Kantari, C. and Walczak, H. 2011. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta. 1813, 558-563. https://doi.org/10.1016/j.bbamcr.2011.01.026
  25. Kaufmann, T., Strasser, A. and Jost, P. J. 2012. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 19, 42-50. https://doi.org/10.1038/cdd.2011.121
  26. Lee, T. K., Park, C., Jeong, S. J., Jeong, M. J., Kim, G. Y., Kim, W. J. and Choi, Y. H. 2016. Sanguinarine induces apoptosis of human oral squamous cell carcinoma KB cells via inactivation of the PI3K/Akt signaling pathway. Drug Dev. Res. 77, 227-240. https://doi.org/10.1002/ddr.21315
  27. Lee, J. S., Jung, W. K., Jeong, M. H., Yoon, T. R. and Kim, H. K. 2012. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway. Int. J. Toxicol. 31,70-77. https://doi.org/10.1177/1091581811423845
  28. Li, W., Li, H., Mu, Q., Zhang, H., Yao, H., Li, J. and Niu, X. 2014. Protective effect of sanguinarine on LPS-induced endotoxic shock in mice and its effect on LPS-induced COX-2 expression and COX-2 associated PGE2 release from peritoneal macrophages. Int. Immunopharmacol. 22, 311-317. https://doi.org/10.1016/j.intimp.2014.07.017
  29. Matkar, S. S., Wrischnik, L. A. and Hellmann-Blumberg, U. 2008. Sanguinarine causes DNA damage and p53-independent cell death in human colon cancer cell lines. Chem. Biol. Interact. 172, 63-71. https://doi.org/10.1016/j.cbi.2007.12.006
  30. Miao, F., Yang, X. J., Zhou, L., Hu, H. J., Zheng, F., Ding, X. D., Sun, D. M., Zhou, C. D. and Sun, W. 2011. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res. 25, 863-875. https://doi.org/10.1080/14786419.2010.482055
  31. Miller, R. A., McIver, J. E. and Gunsolley, J. C. 1988. Effects of sanguinaria extract on plaque retention and gingival health. J. Clin. Orthod. 22, 304-307.
  32. Nakajima, Y. I. and Kuranaga, E. 2017. Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 24, 1422-1430. https://doi.org/10.1038/cdd.2017.36
  33. Pallichankandy, S., Rahman, A., Thayyullathil, F. and Galadari, S. 2015. ROS-dependent activation of autophagy is a critical mechanism for the induction of anti-glioma effect of sanguinarine. Free Radic. Biol. Med. 89, 708-720. https://doi.org/10.1016/j.freeradbiomed.2015.10.404
  34. Park, S. Y., Jin, M. L., Kim, Y. H., Lee, S. J. and Park, G. 2014. Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression. Oncol. Rep. 31, 497-504. https://doi.org/10.3892/or.2013.2843
  35. Senchina, D. S., Flinn, G. N., McCann, D. A., Kohut, M. L. and Shearn, C. T. 2009. Bloodroot (Sanguinaria canadensis L., Papaveraceae) enhances proliferation and cytokine production by human peripheral blood mononuclear cells in an in vitro model. J. Herbs Spices Med. Plants 15, 45. https://doi.org/10.1080/10496470902787485
  36. Slee, E. A., Zhu, H., Chow, S. C., MacFarlane, M., Nicholson, D. W. and Cohen, G. M. 1996. Benzyloxycarbonyl-Val- Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem. J. 315, 21-24. https://doi.org/10.1042/bj3150021
  37. Tummers, B. and Green, D. R. 2017. Caspase-8: regulating life and death. Immunol. Rev. 277, 76-89. https://doi.org/10.1111/imr.12541
  38. Vlachojannis, C., Magora, F. and Chrubasik, S. 2012. Rise and fall of oral health products with Canadian bloodroot extract. Phytother. Res. 26, 1423-1426.
  39. Vrba, J., Hrbac, J., Ulrichova, J. and Modriansky, M. 2004. Sanguinarine is a potent inhibitor of oxidative burst in DMSO-differentiated HL-60 cells by a non-redox mechanism. Chem. Biol. Interact. 147, 35-37. https://doi.org/10.1016/j.cbi.2003.10.003
  40. Wang, Q., Dai, P., Bao, H., Liang, P., Wang, W., Xing, A. and Sun, J. 2017. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats. Exp. Ther. Med. 13, 263-268. https://doi.org/10.3892/etm.2016.3947
  41. Yang, X. J., Miao, F., Yao, Y., Cao, F. J., Yang, R., Ma, Y. N., Qin, B. F. and Zhou, L. 2012. In vitro antifungal activity of sanguinarine and chelerythrine derivatives against phytopathogenic fungi. Molecules 17, 13026-13035. https://doi.org/10.3390/molecules171113026
  42. Zhang, R., Wang, G., Zhang, P. F., Zhang, J., Huang, Y. X., Lu, Y. M., Da, W., Sun, Q. and Zhu, J. S. 2017. Sanguinarine inhibits growth and invasion of gastric cancer cells via regulation of the DUSP4/ERK pathway. J. Cell. Mol. Med. 21, 1117-1127. https://doi.org/10.1111/jcmm.13043