DOI QR코드

DOI QR Code

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae

Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과

  • Kim, Eun-Ju (Fermentated Food Science Division, National Institute of Agricultural Sciences, RDA) ;
  • Song, Bit-Na (Fermentated Food Science Division, National Institute of Agricultural Sciences, RDA) ;
  • Jeong, Da-Som (Fermentated Food Science Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, So-Young (Fermentated Food Science Division, National Institute of Agricultural Sciences, RDA) ;
  • Cho, Yong-Sik (Fermentated Food Science Division, National Institute of Agricultural Sciences, RDA) ;
  • Park, Shin-Young (Fermentated Food Science Division, National Institute of Agricultural Sciences, RDA)
  • 김은주 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과) ;
  • 송빛나 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과) ;
  • 정다솜 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과) ;
  • 김소영 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과) ;
  • 조용식 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과) ;
  • 박신영 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과)
  • Received : 2017.09.15
  • Accepted : 2017.11.16
  • Published : 2017.11.30

Abstract

Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.

본 연구의 목적은 울금의 발효를 통해 쓴맛의 관능적 기호도를 향상시키면서, 발효 울금의 항산화 및 항염효능 검증을 위한 것으로, 발효 울금의 관능적 기호도 확인을 위해 맛센서 분석과 항산화 평가를 위해 총 폴리페놀 및 플라보노이드 함량 및 DPPH radical 소거능, 지표성분 검출을 위해 HPLC분석을 진행하였고, 항염증평가는 RAW 264.7 세포에서 LPS에 의해 유도되는 염증인자인 NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6와 $TNF-{\alpha}$에 대한 감소효과를 측정하였다. 실험결과 Rhizopus oryzae로 울금의 발효가 진행 될수록 쓴맛이 감소함을 보였다. 총 폴리페놀, 플라보노이드 함량과 DPPH radical 소거능은 비 발효 울금보다 울금 발효 1, 3일차에 증가함을 보였다. 발효 기간별 발효 울금은 10, 50, $100{\mu}g/ml$ 모든 농도에서 세포독성이 나타내지 않았다. RAW 264.7 세포에 LPS로 유도된 염증인자인 $NF-{\kappa}B$, IL-6와 $TNF-{\alpha}$ 생성량이 발효 기간별 발효 울금의 염증인자 생성억제를 평가한 결과 $NF-{\kappa}B$와 IL-6에서 발효 울금 $100{\mu}g/ml$에서 현저히 생성량이 억제되었다. LPS로 유도된 cytokines 억제효과를 보인 발효 기간별 발효 울금($100{\mu}g/ml$)의 NO, $PGE_2$ 생성억제를 평가한 결과, 대조군과 비교해 LPS를 처리한 군에서 NO, $PGE_2$의 생성이 현저히 증가되었고, 울금 에탄올 추출물에 의해 유의성 있는 생성억제효과를 보였고 비 발효에 비해 발효 울금의 생성억제 효과를 보였다. 또한 COX-2와 iNOS의 단백질 발현 억제효과를 확인한 결과, 대조군과 비교해 LPS에 의해 증가 된 COX-2와 iNOS의 단백질발현이 발효 울금에 의해 감소됨을 확인하였다. 위 결과 발효 울금은 RAW 264.7 세포에서 LPS에 의해 유도되는 NO와 $PGE_2$의 생성억제, iNOS와 COX-2의 발현을 억제시켰으며, $NF-{\kappa}B$, IL-6와 $TNF-{\alpha}$의 분비량도 억제시켰다. 이는 발효 울금의 항산화와 항염증성을 입증하기 위한 기초자료로 활용이 가능하다고 사료된다.

Keywords

References

  1. Ahn, S. B., Park, H. E., Lee, S. M., Kim, S. Y., Shon, M. Y. and Lee, W. K. 2013. Characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, Korea traditional fermented food, for probiotic use. J. Biomed. Res. 14, 206-211. https://doi.org/10.12729/jbr.2013.14.4.206
  2. Al-sereiti, M. R., Abu-Amer, K. M. and Sen, P. 1999. Pharmacology of rosemary (Ros-marinus officinalis Linn) and its therapeutic potentials. Indian. J. Exp. Biol. 37, 124-130.
  3. Ammara, R. B., Wissem, B., Mohamed, B. S., Jihed, B., Ines, S., Aicha, N. and Ines, B., Bouhl, S. B., Anne-Marie, M., Chekir-Ghedira, L., Marie-Genevieve, D. F. and Kamel, G. 2009. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L (Rhamnaceae): astructure-activity relationship. J. Food Chem. 116, 258-264. https://doi.org/10.1016/j.foodchem.2009.02.043
  4. Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N. and Aggarwal, B. B. 2008. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharm. 76, 1590-1611. https://doi.org/10.1016/j.bcp.2008.08.008
  5. Bak, M. J., Jeong, J. H., Kang, H. S., Jin, K. S., Seon, O. K. and Jeong, W. S. 2009. Cedrela sinensis leaves suppress oxidative stress and expressions of iNOS and COX-2 via MAPK signaling pathways in RAW 264.7 cells. J. Food Sci. Nutr. 14, 269-276.
  6. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  7. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  8. Choi, C. H., Song, E. S., Kim, J. S. and Kang, M. H. 2003. Antioxidative activities of castanea crenataflos methanol extracts. Korean J. Food Sci. TechnoL. 35, 1216-1220.
  9. Chung, E. K., Seo, E. H., Park, J. H., Shim, H. R., Kim, K. H. and Lee, B. R. 2011. Anti-inflammatory and anti-allergic effect of extracts from organic soybean. Kor. J. Org. Agric. 19, 245-253.
  10. Folin, O. and Denis, W. 1912. Phosphotungastic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12, 239-249.
  11. Fukuzawa, K. and Takaoshi, Y. 1990. Antioxidants. J. Act. Oxyg. Free. Rad. 1, 55-70.
  12. Goel, A., Kunnumakkara, A. B. and Aggarwal, B. B. 2008. Curcumin as 'Curecumin': From kitchen to clinic. Biochem. Pharmacol. 75, 787-809. https://doi.org/10.1016/j.bcp.2007.08.016
  13. Harborne, J. B. and Williams, C. A. 2000. Advances in flavonoid research since 1992. Phytochemistry 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  14. Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B. and Kromhout, D. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342, 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  15. Hinz, B. and Brune, K. 2002. Cyclooxygenase-2-10 years later. J. Pharmacol. Exp. Ther. 300, 367-375. https://doi.org/10.1124/jpet.300.2.367
  16. Je, J. Y., Park, P. J., Kim, E. K. and Ahn, C. B. 2009. Antioxidant and angiotensin I converting enzyme inhibitory activity of Bambusae caulis in liquamen. J. Food Chem. 113, 932-935. https://doi.org/10.1016/j.foodchem.2008.08.022
  17. Jeong, J. B., Hong, S. C., Jeong, H. J. and Koo, J. S. 2012. Antiinflammatory effects of ethyl acetate fraction from Cnidium officinale Makino on LPS-stimulated RAW 264.7 and THP-1 Cells. Kor. J. Plant Res. 25, 299-307. https://doi.org/10.7732/kjpr.2012.25.3.299
  18. Jin, T. Y., Wang, M. H., Yin, Y. and Eun, J. B. 2008. Effect of Citrus junos peel on the quality and antioxidant activity of traditional rice wine, jinyangju. J. Kor. Soc. Food Sci. Nutr. 37, 76-82. https://doi.org/10.3746/jkfn.2008.37.1.76
  19. Jung, Y. S., Park, S. J., Park, J. H., Jhee, K. H., Lee, I. S. and Yang, S. A. 2012. Effects of ethanol extracts from Zingiber officinale Rosc., Curcuma longa L., and Curcuma aromatic Salisb. on acetylcholinesterase and antioxidant activities as well as GABA contents. J. Kor. Soc. Food Sci. Nutr. 41, 1395-1401. https://doi.org/10.3746/jkfn.2012.41.10.1395
  20. Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A. and Farnarier, C. 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24, 25-29. https://doi.org/10.1016/S1471-4906(02)00013-3
  21. Kim, K. H., Kim, H. J., Byun, M. W. and Yook, H. S. 2012. Antioxidant and antimicrobial activities of ethanol extract from six vegetables containing different sulfur compounds. J. Kor. Soc. Food Sci. Nutr. 41, 57-583. https://doi.org/10.3746/jkfn.2012.41.1.057
  22. Kim, S. Beom., Kang, B. H., Kwon, H. S. and Kang, J. H. 2011. Antiinflammatory and antiallergic activity of fermented turmeric by lactobacillus johnsonii IDCC 9203. Kor. J. Microbiol. Biotechnol. 39, 266-273.
  23. Lawrence, T., Willoughby, D. A. and Gilroy, D. W. 2002. Antiinflammatory lipid mediators and insights into the resolution of inflammation. Nat. Rev. Immunol. 2, 787-795. https://doi.org/10.1038/nri915
  24. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178, 749-754. https://doi.org/10.1084/jem.178.2.749
  25. Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J. Sci. Technol. 26, 211-219.
  26. Moncada, S. and Higgs, A. 1993. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002-2012. https://doi.org/10.1056/NEJM199312303292706
  27. Moreno, M. I., Isla, M. I., Sampietro, A. R. and Vattuone, M. A. 2000. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J. Ethnopharmacol. 71,109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  28. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  29. Nakayama, T., Mutsuga, M., Yao, L. and Tosato, G. 2006. Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J. Leukoc. Biol. 79, 95-104. https://doi.org/10.1189/jlb.0405226
  30. Oh, H. I., Park, H. B., Ju, M. S., Jung, S. Y. and Oh, M. S. 2010. Comparative study of anti-oxidant and anti-inflammatory activities between Curcumae longae Radix and Curcumae longae Rhizoma. Kor. J. Herbology 25, 83-91.
  31. Park, C. S. and Lee, T. S. 2002. Quality characteristics of Takju prepared by wheat flour Nuruks. Kor. J. food Sci. Technol. 34, 296-302.
  32. Priyadarsini, K. I., Maity, D. K., Naik, G. H., Kumar, M. S., Unnikrishnan, M. K., Satav, J. G. and Mohan, H. 2003. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 35, 475-484. https://doi.org/10.1016/S0891-5849(03)00325-3
  33. Ryu, J. H., Ahn, H., Kim, J. Y. and Kim, Y. K. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother. Res. 17, 485-489. https://doi.org/10.1002/ptr.1180
  34. Sandur, S. K., Ichikawa, H., Pandey, M. K., Kunnumakkara, A. B., Sung, B., Sethi, G. and Aggarwal, B. B. 2007. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic. Biol. Med. 43, 568-580. https://doi.org/10.1016/j.freeradbiomed.2007.05.009
  35. Soudamini, K. K. and Kuttan, R. 1988. Cytotoxic and tumour reducing properties of curcumin. Indian. J. Pharmacol. 20, 95-101.
  36. Srivastava, R. M., Singh, S., Dubey, S. K., Misra, K. and Khar, A. 2011. Immunomodulatory and therapeutic activity of curcumin. Int. Immunopharmacol. 11, 331-341. https://doi.org/10.1016/j.intimp.2010.08.014
  37. Uttara, B., Singh, A. V., Zamboni, P. and Mahajan, R. T. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 7, 65-74. https://doi.org/10.2174/157015909787602823
  38. Wang, X. S. and Lau, H. Y. 2006. Prostaglandin E potentiates the immunologically stimulated histamine release from human peripheral blood-derived mast cells through EP1/EP3 receptors. Allergy 61, 503-506. https://doi.org/10.1111/j.1398-9995.2006.01043.x
  39. Weisz, A., Ciacatiello, I. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem. J. 316, 209-215. https://doi.org/10.1042/bj3160209
  40. Weller, C. L., Collington, S. J., Hartnell, A., Conroy, D. M., Kaise, T., Barker, J. E., Wilson, M. S., Taylor, G. W., Jose, P. J. and Williams, T. J. 2007. Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc. Natl. Acad. Sci. USA 104, 11712-11717. https://doi.org/10.1073/pnas.0701700104
  41. Yang, S. W., Kim, B. R., Lee, G. W., Lee, C. and Moon, B. G. 2014. Quality characteristics of cream soup with hericium erinaceus powder. J. East Asian Soc. Diet. Life 24, 631-640.
  42. Yi, H. S., Heo, S. K., Yun, H. J., Choi, J. W., Jung, J. H. and Park, S. D. 2008. Anti-oxidative and anti-inflammatory effects of Draconis Resina in mouse macrophage cells. Kor. J. Herbology 23, 179-192.