DOI QR코드

DOI QR Code

β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells

인간 단핵구 THP-1 세포에서 β-glucan으로 인한 TNF-α 분비 증가 효과

  • 금보람 (신라대학교 일반대학원 바이오과학과) ;
  • 현진이 (신라대학교 일반대학원 바이오과학과) ;
  • 최소희 (신라대학교 일반대학원 바이오과학과) ;
  • 진지영 (신라대학교 일반대학원 바이오과학과) ;
  • 정지우 (신라대학교 생명과학과) ;
  • 임종민 ((주)글루칸) ;
  • 박동찬 ((주)글루칸) ;
  • 조광근 (경남과학기술대학교 동물소재과학과) ;
  • 최은영 (신라대학교 생명과학과) ;
  • 최인순 (신라대학교 일반대학원 바이오과학과)
  • Received : 2017.09.18
  • Accepted : 2017.11.27
  • Published : 2017.11.30

Abstract

${\beta}$-glucan is a constituent of the cell wall of fungi, yeast and plants. It plays an important role in the immune system such as activation of immunocyte, release of pro-inflammatory and anti-cancer effect. The immune system maintains a healthy immune homeostasis. However, when pathogenic substances enter the body, immune homeostasis can break down and disease can be triggered. Therefore, we studied a substance that regulates immune homeostasis. The purpose of the study we demonstrated whether the ${\beta}$-glucan can be applied to the immune-modulation effects in human monocytic THP-1 cells. ${\beta}$-glucan was incubated in THP-1 cells at various concentrations. The $TNF-{\alpha}$ mRNA expression and protein levels were analyzed by ELISA and Real-time PCR. Additionally, the expression of MAPKs (p38 and JNK), $I{\kappa}B-{\alpha}$ and $NF-{\kappa}B$ p50 were analyzed by western blot. ${\beta}$-glucan enhanced the production of $TNF-{\alpha}$ mRNA expression and protein levels in human monocytic THP-1 cells. In addition, activation of MAPKs (p38 and JNK) and $NF-{\kappa}B$ p50 induced by ${\beta}$-glucan were increased. The study suggests that ${\beta}$-glucan contributes to immune-stimulation effect by production $TNF-{\alpha}$ in human monocytic THP-1 cells, and that MAPKs and $NF-{\kappa}B$ p50 are involved in the process. Synthetically, we have suggested ${\beta}$-glucan may be improved to immune system effect in human monocytic THP-1 cells.

${\beta}$-glucan은 균류의 세포벽, 귀리, 효모, 식물의 구성물질로, 면역 세포의 활성, 전염증성 사이토카인 분비, 항암효능과 같은 면역 체계에 중요한 역할을 한다. 면역계는 건강한 몸 상태의 항상성을 유지한다. 하지만, 병원성 물질이 신체 내로 들어오게 되면 면역 항상성이 무너지게 되고, 질병이 유발될 수 있다. 따라서, 본 연구는 ${\beta}$-glucan이 인간 단핵구 THP-1 세포에서 면역 조절 효과에 이용될 수 있는지를 확인하였다. ${\beta}$-glucan은 THP-1 세포에 다양한 농도를 처리하여 배양하였으며, $TNF-{\alpha}$ mRNA 발현과 단백질 수준을 Real-time PCR와 ELISA을 이용하여 분석하였다. 또한 전사 인자 $NF-{\kappa}B$ p50와 MAPKs 신호 기작 활성을 western blot을 이용하여 분석하였다. ${\beta}$-glucan으로 유도된 MAPKs와 $NF-{\kappa}B$ p50 활성이 증가하였다. ${\beta}$-glucan이 인간 단핵구 THP-1 세포에서 $TNF-{\alpha}$ 생성에 의해 면역 증강 효과를 나타내며, 이는 MAPKs와 $NF-{\kappa}B$ p50 신호 전달을 통해 나타내는 것을 제시한다. 종합적으로, 본 연구는 ${\beta}$-glucan이 인간 단핵구 THP-1 세포를 통해 면역 체계를 향상시킬 것이라고 사료된다.

Keywords

References

  1. Akramiene. D., Kondrotas, A., Didziapetriene, J. and Kevelaitis, E. 2007. Effects of beta-glucans on the immune system. Medicina (Kaunas). 43, 597-606. https://doi.org/10.3390/medicina43080076
  2. Alvarez, B., Quinn, L. S., Busquets, S., Lopez-Soriano, F. J. and Argiles, J. M. 2001, Direct effects of tumor necrosis factor alpha (TNF-alpha) on murine skeletal muscle cell lines. Bimodal effects on protein metabolism. Eur. Cytokine Netw. 12, 399-410.
  3. Arena, M. P., Spano, G. and Fiocco, D. 2017. ${\beta}$-Glucans and Probiotics. Am. J. Immunol. 13, 34-44. https://doi.org/10.3844/ajisp.2017.34.44
  4. Cavalcanti, Y. V., Brelaz, M. C., Neves, J. K., Ferraz, J. C. and Pereira, V. R. 2012. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm. Med. 2012. 745483-745493.
  5. Chan, G. C., Chan, W. K. and Sze, D. M. 2009. The effect of ${\beta}$-glucan on human immune and cancer cells. J. Hematol Oncol. 2, 1-11. https://doi.org/10.1186/1756-8722-2-1
  6. Choi, E. Y., Lee, S. S., Hyeon, J. Y., Choe, S. H., Keum, B. R., Lim, J. M., Park, D. C., Choi, I. S. and Cho, K. K. 2016. Effects of ${\beta}$-glucan on the release of nitric oxide by macrophages stimulated with lipopolysaccharide. Asian-Australas. J. Anim. Sci. 29, 1664-1674. https://doi.org/10.5713/ajas.16.0418
  7. Choi, M. W., Park, I. D., Park, K. Y. and Kim, K. H. 2011. Effects of ${\beta}$-lapachone on the production of inflammatory cytokines in mice. Cancer Prev. Res. 16, 155-160.
  8. Dapat, I. C., Pascapurnama, D. N., lwasaki, H., Labayo, H. K., Haorile, C. Y., Egawa, S. and Hattori, T. 2017. Secretion of galectin-9 as a DAMP during dengue virus infection in THP-1 cells. Int. J. Mol. Sci. 18, 1644-1653. https://doi.org/10.3390/ijms18081644
  9. Hong, K. H., Jang, K. H. and Kang, S. A. 2016. Effects of dietary ${\beta}$-glucan on short chain fatty acids composition and intestinal environment in rats. Kor. J. Food Nutr. 29, 162-170. https://doi.org/10.9799/ksfan.2016.29.2.162
  10. Joo, J. D. 2009. The use of intra-cellular signaling pathways in anesthesiology and pain medicine field. Kor. J. Anesthesiol. 57, 277-283. https://doi.org/10.4097/kjae.2009.57.3.277
  11. Kang, S. W. 2013. Role of reactive oxygen species in cell death pathways. Hanyang Med. Rev. 33, 77-82. https://doi.org/10.7599/hmr.2013.33.2.77
  12. Kim, H. W. 2014. Immune mechanism of mushroom beta glucan. J. Mushrooms. 18, 31-38.
  13. Kim, W. J., Yoon, T. J., Kim, D. W., Moon, W. K. and Lee, K. H. 2010. Immunostimulating activity of beta-glucan isolated from the cell wall of mutant Saccharomyces cerevisiae, and its anti-tumor application in combination with cisplatin. Kor. J. Food Nutr. 23, 141-146.
  14. Kofuji, K., Aoki, A., Tsubaki, K., Konishi, M., Isobe, T. and Murata, Y. 2012. Antioxidant activity of ${\beta}$-glucan. ISRN Pharm. 2012, 10.5402/2012/125864.
  15. Kwon, H. K., Hwang, J. S., So, J. S. and Im, S. H. 2008. Immunological homeostasis and inflammatory immune disorders. Kor. Soc. Mol. Cells. 3. 48-69.
  16. Lee, J. S., Lee, S. H., Jang, Y. M., Lee, J. D., Lee, B. H. and Jung, J. Y. 2011. Macrophage and anticancer activities of feed additives on ${\beta}$-glucan from Schizophyllum commune in breast cancer cells. J. Kor. Soc. Food Sci. Nutr. 40, 949-955. https://doi.org/10.3746/jkfn.2011.40.7.949
  17. Lei, N., Wang, M., Zhang, L., Xiao, S., Fei, C., Wang, X., Zhang, K., Zheng, W., Wang, C., Yang, R. and Xue, F. 2015. Effects of low molecular weight yeast ${\beta}$-glucan on antioxidant and immunological activities in mice. Int. J. Mol. Sci. 16, 21575-21590. https://doi.org/10.3390/ijms160921575
  18. Park, E. K., Kang, S. M. and Leem, M. H. 2003. A study on the variation of skin moisture, oil (sebum), melanin and erythema index after application of ${\beta}$-glucan. Asian J. Beauty Cosmetol. 1, 83-94.
  19. Park, K. S. and Kim, K. J. 2010. Effects of atopic dermatitis induced materials on the expression of cytokine genes in human monocytes and mast cells. J. Kor. Med. Ophthalmol. Otolaryngol. Dermatol. 23, 41-56.
  20. Park, W. Y., Sung, N. Y., Byun, E. H., Oh, K. H., Byun, M. W. and Yoo, Y. C. 2015. Immuno-modulatory activities of polysaccharides separated from Jubak in macrophage cells. J. Kor. Soc. Food Sci. Nutr. 44, 1079-1083. https://doi.org/10.3746/jkfn.2015.44.7.1079
  21. Seo, H. P., Kim, J. M., Shin, H. D., Kim, T. K., Chang, H. J., Park, B. R. and Lee, J. W. 2002. Production of be ta-1,3/1,6-glucan by Aureobasidium pullulans SM-2001. Kor. J. Biotechnol. Bioeng. 17, 376-380.
  22. Shi, C. and Parmer, E. G. 2011. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762-774. https://doi.org/10.1038/nri3070
  23. Stier, H., Ebbeskotte, V. and Gruenwald, J. 2014. Immunemodulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr. J. 13, 38-47. https://doi.org/10.1186/1475-2891-13-38
  24. Yoo, S. A., Kim, O. K., Nam, D. E., Kim, Y. J., Bae, H. Y., Jum, W. J. and Lee, J. M. 2014. Immunomodulatory effects of fermented Curcuma longa L. extracts on RAW 264.7 cells. J. Kor. Soc. Food Sci. Nutr. 43, 216-223. https://doi.org/10.3746/jkfn.2014.43.2.216
  25. Yu, A. R., Park, H. Y., Kim, Y. S., Ha, S. K., Hong, H. D. and Choi, H. D. 2012. Immuno-enhancing effect of seed extracts on a RAW 264.7 macrophage cell line. J. Kor. Soc. Food Sci. Nutr. 41, 1671-1676. https://doi.org/10.3746/jkfn.2012.41.12.1671