DOI QR코드

DOI QR Code

지하투과레이더를 이용한 이상구간 평가 시 안테나 지향성의 영향

The Effect of Directivity of Antenna for the Evaluation of Abnormal Area Using Ground Penetrating Radar

  • 강성훈 (고려대학교 건축사회환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부) ;
  • 이성진 (한국철도기술연구원, 광역도시교통연구본부) ;
  • 박영곤 (한국철도기술연구원, 광역도시교통연구본부) ;
  • 홍원택 (고려대학교 건축사회환경공학부)
  • Kang, Seonghun (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Sung Jin (Metropolitan Transportation Research Center, Korea Railroad Research institute) ;
  • Park, Young-Kon (Metropolitan Transportation Research Center, Korea Railroad Research institute) ;
  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 투고 : 2017.07.24
  • 심사 : 2017.10.12
  • 발행 : 2017.11.30

초록

지하투과레이더 신호는 같은 대상지반에 대하여 탐사를 수행하더라도 안테나의 지향성에 따라 신호의 진폭이 다르게 측정될 수 있으므로 이상구간 평가 시 안테나의 지향성을 고려하여야 한다. 본 논문의 목적은 전자기파의 반사특성분석을 통하여 안테나의 지향성을 조사하고, 지향성에 따른 이상구간의 검측이 가능한 각도의 유효범위를 평가하는 것이다. 지향성 측정을 위하여 원형의 금속봉을 반사체로 설정하고 전자기파의 E-평면(E-plane)과 H-평면(H-plane)에 대하여 안테나와 이루는 각도와 거리를 조절하며 반사파를 측정하였다. 측정된 반사파의 분석을 통하여 안테나에 대한 영역의 경계를 설정하였으며, 근거리장 및 원거리장 영역에서 각각 서로 거리가 다른 두 지점을 설정하여 근거리장 및 원거리장 영역에서의 방사 패턴을 조사하였다. 방사 패턴 측정 결과, 근거리장에서는 E-평면 및 H-평면 모두 최소 $50^{\circ}$ 이상의 구간에서 부엽이 나타나 주엽 방향 및 부엽 방향에 대하여 지향성을 보인 반면, 원거리장에서는 주엽 방향에 대해서만 지향성을 보였다. 근거리장 영역에서는 반사파의 진폭이 변동을 보이긴 하나 반사파와 잡음의 구분이 가능하여 분석의 신뢰도가 높은 반면 원거리장 영역에서는 반사파의 진폭은 안정된 모습을 보였으나 전자기파손실이 크기 때문에 반사파와 잡음의 구분이 어려워 분석의 신뢰도가 낮을 것으로 판단되었다. 본 연구에서 수행된 근거리장과 원거리장에서의 지향성 평가는 도심지와 같이 임의의 위치 및 깊이에 존재할 수 있는 이상구간 평가시 신뢰도 향상에 활용될 수 있음을 보여준다.

The ground penetrating radar (GPR) signal can be measured with different amplitudes according to the directivity, so the directivity of the antenna should be considered. The objective of this study is to investigate the directivity of antenna by analyzing the reflection characteristics of electromagnetic waves radiated from the antenna, and to evaluate effective range of angle that can inspect an abnormal area according to the directivity of antenna. For the measurement of the directivity, a circular metal bar is used as reflector and the signals are measured by changing the angle and the distance between reflector and antenna in the E- and H-plane. The boundary distance between the near field and the far field is determined by analyzing the amplitudes of reflected signals, and two points with different distances from each of near and far fields are designated to analyze radiation patterns in near and far fields. As a result of radiation pattern measurement, in the near field, minor lobes are observed at angle section at more than $50^{\circ}$ in both E- and H-plane. Therefore, antenna has the directivity for the direction of main lobe and minor lobes in near field. In the far field, antenna has the directivity for a single direction of main lobe because minor lobes are not observed. The amplitude of the signal reflected from the near field is unstable, but it can be distinguished from noise. Therefore, in the near field, the ground anomaly can be detected with high reliability. On the other hand, the amplitude of the signal reflected from the far field is stable, but it is hard to distinguish between reflected signal and noise because of the excessive loss of electromagnetic wave. The analyses of directivity in the near and the far fields performed in this study may be effectively used to improve the reliability of the analyses of abnormal area.

키워드

참고문헌

  1. Ahmed, A., Zhang, Y., Burns, D., Huston, D., and Xia, T. (2016), "Design of UWB Antenna for Air-coupled Impulse Ground-penetrating Radar", IEEE Geoscience and Remote Sensing Letters, Vol.13, No.1, pp.92-96. https://doi.org/10.1109/LGRS.2015.2498404
  2. Annan, A. P. (2003), "Ground Penetrating Radar Principles, Procedures, and Applications", Sensors and Software. Inc., pp.293.
  3. Arcone, S. A., Spikes, V. B., Hamilton, G. S., and Mayewski, P. A. (2004), "Stratigraphic Continuity in 400 MHz Short-pulse Radar Profiles of Firn in West Antarctica", Annals of Glaciology, Vol.39, No.1, pp.195-200. https://doi.org/10.3189/172756404781813925
  4. ASTM D6432-11 (2011), "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation", Annual Book of ASTM Standard, Vol.4, No.9.
  5. Bialkowski, M. E. and Wang, Y. (2009), "A Size-reduced Exponentially Tapered Slot Antenna with Corrugations for Directivity Improvement", In Microwave Conference, 2009, pp.2482-2485.
  6. Bruschini, C., Gros, B., Guerne, F., Piece, P. Y., and Carmona, O. (1998), "Ground Penetrating Radar and Imaging Metal Detector for Antipersonnel Mine Detection", Journal of Applied Geophysics, Vol.40, No.1, pp.59-71. https://doi.org/10.1016/S0926-9851(97)00038-4
  7. Choi, S. O., Jeon, Y. S., Park, E. S., Jung, Y. B., and Chun, D. S. (2005), "Analysis of Subsidence Mechanism and Development of Evaluation Program", Journal of Korean Society For Rock Mechanics, Vol.15, No.3, pp.195-212.
  8. Daniels, D. J. (2004), "Ground Penetrating Radar", Iet, pp.726.
  9. Davis, J. L. and Annan, A. P. (1989), "Ground Penetrating Radar for High Resolution Mapping of Soil and Rock Stratigraphy", Geophysical Prospecting, Vol.37, No.5, pp.531-551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x
  10. De Jongh, R. V., Ligthart, L. P., Kaploun, I. V., and Schukin, A. D. (1999), "Design and Analysis of New GPR Antenna Concepts", Tijdschrift-Nederlands Elektronica En Radiogenootschap, 64, pp.26-32.
  11. Everett, M. E. (2013), "Near-surface Applied Geophysics", Cambridge University Press, p.403.
  12. Evinemi, I. E., Adepelumi, A. A., and Adebayo, O. (2016), "Canal Structure Subsidence Investigation Using Ground Penetrating Radar and Geotechnical Techniques", International Journal of Geo-Engineering, Vol.7, No.1, pp.1-14. https://doi.org/10.1186/s40703-016-0015-x
  13. Geophysical Survey Systems, Inc. (2012), "RADAN 7", GSSI, p.133.
  14. Hong, W. T., Kang, S., and Lee, J. S. (2015), "Application of Ground Penetrating Radar for Estimation of Loose Layer", Journal of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48. https://doi.org/10.7843/KGS.2015.31.11.41
  15. Jiao, Y., McMechan, G. A., and Pettinelli, E. (2000), "In Situ 2-D and 3-D Measurements of Radiation Patterns of Half-wave Dipole GPR Antennas", Journal of Applied Geophysics, Vol.43, No.1, pp. 69-89. https://doi.org/10.1016/S0926-9851(99)00048-8
  16. Jol, H. M. (2008), "Ground Penetrating Radar Theory and Applications", Elsevier, p.544.
  17. Kleiner, M. (2013), "Electroacoustics", CRC Press, pp.628.
  18. Kwak, P. J., Park, S. H., Choi, C. H., and Lee, H. D. (2015), "Safety Monitoring Sensor for Underground Subsidence Risk Assessment Surrounding Water Pipeline", Journal of Sensor Science and Technology, Vol.24, No.5, pp.306-310. https://doi.org/10.5369/JSST.2015.24.5.306
  19. Markovaara-Koivisto, M., Hokkanen, T., and Huuskonen-Snicker, E. (2014), "The Effect of Fracture Aperture and Filling Material on GPR Signal", Bulletin of Engineering Geology and the Environment, Vol.73, No.3, pp.815-823. https://doi.org/10.1007/s10064-013-0566-4
  20. Mikhnev, V. and Vainikainen, P. (2003), "Wideband Tapered-slot Antenna with Corrugated Edges for GPR Applications", 2003 33rd European, 727-729.
  21. Millard, S. G., Shaari, A., and Bungey, J. H. (2002), "Field Pattern Characteristics of GPR Antennas", NDT & E International, Vol.35, No.7, pp.473-482. https://doi.org/10.1016/S0963-8695(02)00023-3
  22. Perez-Gracia, V., Di Capua, D., Gonzalez-Drigo, R., Caselles, O., Pujades, L. G., and Salinas, V. (2010), "GPR Resolution in Cultural Heritage Applications. In ground Penetrating Radar (GPR)", 2010 13th International Conference on. IEEE, pp.1-5.
  23. Rial, F. I., Lorenzo, H., Pereira, M., and Armesto, J. (2009), "Waveform Analysis of UWB GPR Antennas", Sensors, Vol.9, No.3, pp.1454-1470. https://doi.org/10.3390/s90301454
  24. Rodriguez, V., Gutierrez, F., Green, A. G., Carbonel, D., Horstmeyer, H., and Schmelzbach, C. (2014), "Characterizing Sagging and Collapse Sinkholes in a Mantled Karst by Means of Ground Penetrating Radar (GPR)", Environmental & Engineering Geoscience, Vol.20, No.2, pp.109-132. https://doi.org/10.2113/gseegeosci.20.2.109
  25. Rudge, A. W. (1983), "The Handbook of Antenna Design", Iet, 945.
  26. Salako, A. O. and Adepelumi, A. A. (2016), "Evaluation of Hydraulic Conductivity of Subsoil Using Electrical Resistivity and Ground Penetrating Radar Data: Example from Southwestern Nigeria", International Journal of Geo-Engineering, Vol.7, No.1, p.5. https://doi.org/10.1186/s40703-016-0018-7
  27. Smitha, N., Bharadwaj, D. U., Abilash, S., Sridhara, S. N., and Singh, V. (2016), "Kirchhoff and FK Migration to Focus Ground Penetrating Radar Images", International Journal of Geo-Engineering, Vol.7, No.1, p.4. https://doi.org/10.1186/s40703-016-0019-6
  28. Stutzman, W. L. and Thiele, G. A. (2012), "Antenna Theory and Design", John Wiley & Sons, p.822.
  29. Thitimakorn, T., Kampananon, N., Jongjaiwanichkit, N., and Kupongsak, S. (2016), "Subsurface Void Detection under the Road Surface Using Ground Penetrating Radar (GPR), a Case Study in the Bangkok Metropolitan Area, Thailand", International Journal of Geo-Engineering, Vol.7, No.1, p.2. https://doi.org/10.1186/s40703-016-0017-8
  30. Trinks, I., Fischer, P., Locker, K., and Flory, S. (2013), "Hala Sultan Tekke revisited-archaeological GPR prospection on Cyprus 1980 and 2010/12", 10th International Conference on Archaeological Prospection, pp.285-287.
  31. Valle, S., Zanzi, L., Sgheiz, M., Lenzi, G., and Friborg, J. (2001), "Ground Penetrating Radar Antennas: Theoretical and Experimental Directivity Functions", IEEE Transactions on Geoscience and Remote Sensing, Vol.39, No.4, pp.749-759. https://doi.org/10.1109/36.917886
  32. Viriyametanont, K., Laurens, S., Klysz, G., Balayssac, J. P., and Arliguie, G. (2008), "Radar Survey of Concrete Elements: Effect of Concrete Properties on Propagation Velocity and Time Zero", NDT & E International, Vol.41, No.3, pp.198-207. https://doi.org/10.1016/j.ndteint.2007.10.001
  33. Wang, Y. W., Wang, G. M., and Zong, B. F. (2013), "Directivity Improvement of Vivaldi Antenna Using Double-slot Structure", IEEE Antennas and Wireless Propagation Letters, 12, pp.1380-1383. https://doi.org/10.1109/LAWP.2013.2285182
  34. Warren, C. and Giannopoulos, A. (2012), "Investigation of the Directivity of a Commercial Ground-penetrating Radar Antenna Using a Finite-difference Time-domain Antenna Model", 2012 14th International Conference, pp.226-231.
  35. Yaghjian, A. (1986), "An Overview of Near-field Antenna Measurements", IEEE Transactions on antennas and propagation, Vol.34, No.1, pp.30-45. https://doi.org/10.1109/TAP.1986.1143727