DOI QR코드

DOI QR Code

Flat TDR 시스템을 이용한 흙의 함수비와 건조단위중량 측정

Water Content and Dry Density Measurement of Soil Using Flat TDR System

  • 김완민 (조선대학교 토목공학과) ;
  • 김대현 (조선대학교 토목공학과) ;
  • 서혁 (조선대학교 토목공학과)
  • 투고 : 2017.07.03
  • 심사 : 2017.10.24
  • 발행 : 2017.11.30

초록

본 연구는 전통적인 다짐관리방법의 문제점을 보완하고자 TDR(Time Domain Reflectometry)을 이용하여 지반의 함수비와 건조단위중량을 측정하는 연구를 수행하였다. 개발된 Flat TDR 시스템의 측정값을 검증하기 위해 여섯 가지 시료를 대상으로 실내실험을 수행하였다. 또한 실내실험을 바탕으로 현장시험을 수행하여 현장 적용성을 검토하였고, 신뢰성을 확보하기 위해 Purdue TDR 시스템과 비교실험을 수행하여 정밀도를 확인하였다. 또한 유한요소해석을 수행하여 Flat 프로브의 영향범위를 확인하였다. 그 결과 약 10cm의 영향범위를 확인하였고, 실내실험결과 함수비는 평균적으로 약 0.4%의 오차를 보이며, 건조단위중량의 경우 약 1.6%의 오차를 보였다. 현장시험의 경우 함수비는 0.8%, 건조단위중량의 경우 2.5%의 오차를 보였다. 실험 결과를 통하여 Flat TDR 시스템의 측정값은 기존의 TDR 시스템보다 정확한 값을 도출하는 것을 확인할 수 있었다.

This study has been conducted to improve the conventional compaction management method by measuring the water content and dry unit weight of soil using the Time Domain Reflectometry (TDR) method. In order to verify the measured value of the developed flat TDR system, laboratory tests were conducted on six soils. Also, based on laboratory experiments, field tests were conducted to evaluate the applicability of the developed flat TDR system. Also, a comparison experiment was conducted with the Purdue TDR system. In addition, FE analysis was done to confirm the influence range of the Flat probe. As a result, it was confirmed that the influence range was about 10 cm. As a result of laboratory experiment, the water content ratio showed an error of about 0.4% on the average, and in the case of dry unit weight, it showed an error of about 1.6%. For the field test, the water content ratio and unit weight showed an error of 0.8% and 2.5%, respectively. Through the experimental results, it was confirmed that the measured value of the Flat TDR system is more accurate than that of the conventional TDR system.

키워드

참고문헌

  1. ASTM D 6780-05 (2005), "Standard Test Method for Water Content and Density of Soil in Place by Time Domain Reflectometry (TDR)", Annual Book of ASTM Standards.
  2. Ferre, P.A., Knight, J.H., Rudolph, D.I., and Kachanoski, R.G. (1998), "The Sample Areas of Comventional and Alternative Time Domain Reflectometry Probes", Water Resources Research, Vol. 34, No.11, pp.2971-2979. https://doi.org/10.1029/98WR02093
  3. Giese, K. and Tiemann, R. (1975), "Determination of the Complex Permittivity from Thin- Sample Time Domain Reflectometry: Improved Analysis of the Step Response Wave form", Advances in Molecular Relaxation and Interaction Processes, Vol.7, No.1, pp.45-59. https://doi.org/10.1016/0001-8716(75)80013-7
  4. Jung, S., Drnevich, V., and Abou Najm, M. (2013), "New Methodology for Density and Water Content by Time Domain Reflectometry", Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.5, pp.659-670. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000783
  5. Knight, J.H., Ferre, P.A., Rudolph, D.I., and Kachanoski, R. G. (1997), "A Numerical Analysis of the Effects of Coatings and Gaps upon Relative Dielectric Permittivity Measurement with Time Domain Reflectometry", Water Resources Research, Vol.33, No. 6, pp.1455-1460. https://doi.org/10.1029/97WR00435
  6. Sallam, A. M., White, N. K., and Ashmawy, A. K. (2004), "Evaluation of the Purdue TDR Method for Soil Water Content and Density Measurement", Final Report the Florida Department of Transportation, No.BC-353-30.
  7. Siddiqui, S.I. and Drnevich, V.P. (1995), "A New Method of Measuring Density and Moisture Content of Soil Using the Technique of Time Domain Reflectometry", Joint Highway Research Project, Purdue University, Ph. D. Thesis.
  8. Song, M. W., Kim, D. H., and Choi, C. Y. (2015), "A New Calibration Equation for Predicting Water Contents With TDR", Journal of Korean Geosynthetics Society, Vol.14, No.1, pp.59-65.
  9. Song, M. W., Choi, C. Y., and Kim, D. H. (2016a), "Development of a Flat-type TDR System for Compaction Control", Journal of Korean Geotechnical Society, Vol.32, No.4, pp.51-61. https://doi.org/10.7843/KGS.2016.32.4.51
  10. Song, M. W., Kim, W. M., Kim, D. H., and Choi C. Y. (2016b), "Prediction of the Elastic Modulus of Improved Soil Using the Flat TDR System", Journal of Korean Geosynthetics Society, Vol.15, No.3, pp.77-85. https://doi.org/10.12814/jkgss.2016.15.3.077
  11. Thring, L.M., Boddice, D., Metje, N., Curioni, G., Chapman, D.N., and Pring, L. (2014), "Factors Affecting Soil Permittivity and Proposals to Obtain Gravimetric Water Content from Time Domain Reflectometry Measurements", Canadian Geotechnical Journal, Vol.51, No.11, pp.1303-1317. https://doi.org/10.1139/cgj-2013-0313
  12. Topp, G.C., Davis, J.L., and Annan, A.P. (1980), "Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines", Water resources research, Vol.16, No.3, pp. 574-582. https://doi.org/10.1029/WR016i003p00574
  13. Yu, X. and Drnevich, V.P. (2004), "Soil Water Content and Dry Density by Time Domain Reflectometry", Journal of Geotechnical and Geoenvironmental Engineering, Vol.130, No.9, pp.922-934. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(922)
  14. Xinbao Yu and Xiong Yu (2006), "Time Domain Reflectometry Tests of Multilayered Soils", Proc. TDR, Purdue University, pp. 1-16.