DOI QR코드

DOI QR Code

Evaluation of Antioxidant and Anti-diabetic Effects of Sappan Lignum by Extraction Method

추출방법에 따른 소목 심재의 항산화 및 항당뇨 활성 평가

  • Hong, Young Ju (Department of Food Science and Biotechnology, Daegu University) ;
  • Jeong, Gyeong Han (Department of Food Science and Biotechnology, Daegu University) ;
  • Jeong, Yun Hee (Department of Food Science and Biotechnology, Daegu University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 홍영주 (대구대학교 식품공학과) ;
  • 정경한 (대구대학교 식품공학과) ;
  • 정윤희 (대구대학교 식품공학과) ;
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2017.09.06
  • Accepted : 2017.11.15
  • Published : 2017.11.30

Abstract

Objectives : The heartwood of Sappan Lignum has been used since ancient times as an ingredient in folk medicines against anti-bacterial and anti-anemia purposes. Many bioactive constituents have been derived from this biomass such as chalcones and homoisoflavonoids. In the current investigation, the antioxidant and anti-diabetic properties using DPPH and $ABTS^+$ radicals scavenging, ${\alpha}-glucosidase$, and advanced glycation end products (AGEs) inhibition assays were evaluated by different extraction methods of Sappan Lignum. Methods : In our continuing investigation for bioactive natural ingredients, the antioxidant and ${\alpha}-glucosidase$ inhibitory properties of Sappan Lignum extracts were prepared from different extraction methods and the biological efficacies were investigated in vitro. The antioxidant properties were evaluated employing radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals. In addition, the anti-diabetic effects of Sappan Lignum extracts were tested via ${\alpha}-glucosidase$ and AGEs formation inhibitory assay. The total phenolic contents were determined using a spectrophotometric method. Results : All the tested samples showed dose-dependent radical scavenging and ${\alpha}-glucosidase$ inhibitory activities. Among the tested extracts, the 80% methanolic extract of Sappan Lignum was showed the most potent activity with an $IC_{50}$ value of $82.3{\pm}1.7{\mu}g/m{\ell}$ against DPPH radical scavenging assay. While, $ABTS^+$ radical scavenging activity of 80% methanolic extract was higher than those of other extracts. Also, ${\alpha}-glucosidase$ inhibitory and AGEs formation effects of each extacts and total phenolic contents were evaluated. Conclusions : These results suggested that Sappan Lignum can be considered as a new effective source of natural antioxidant and anti-diabetic materials.

Keywords

References

  1. Videla LA, Fermandez V. Biochemical aspects of cellular oxidative stress. Arch Biol Med Exp. 1988 ; 21(1) : 85-92.
  2. Halliwell B, Aruoma OJ. DNA damage by oxygenderived species. FEBS Lett, 1991 ; 281(1-2) : 9-19. https://doi.org/10.1016/0014-5793(91)80347-6
  3. Jennings PE, Barnett AH. New approaches to the pathogenesis and treatment of diabetic microangiopathy. Diabetic Med. 1988 ; 5(2) : 111-117. https://doi.org/10.1111/j.1464-5491.1988.tb00955.x
  4. Shim JS, Kim SD, Kim TS, Kim KN. Biological activities of flavonoid glycosides isolated from Angelica keiskei . Korean J Food Sci Technol. 2005 ; 37(1) : 78-83.
  5. Farag RS, Badei AZMA, Hewedi GSA, Baroty EL. Antioxidant activity of some spice essential ols on linoleic acid osidation in aqueous media. J American Oil Chem Soc. 1984 ; 66(6) : 792-799. https://doi.org/10.1007/BF02653670
  6. Frei B. National antioxidants in human health and disease. Academic Press, San Diego. 1944 ; 44-55.
  7. Branen AL. Toxicology and biochemistry of butylated hydroxy anisole and butylated hydroxy toluene. J Oil Chem Soc. 1975 ; 52(2) : 59-62. https://doi.org/10.1007/BF02901825
  8. Maltese F, Erkelens C, van der Kooy F, Choi YH, Verpoorte R. Identification of natural epimeric flavanone glycosides by NMR spectroscopy. Food chem. 2009 ; 116(2) : 575-579. https://doi.org/10.1016/j.foodchem.2009.03.023
  9. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes care. 1992 ; 15(3) : 318-368. https://doi.org/10.2337/diacare.15.3.318
  10. Kahn SE, Prigeon R.L, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Palmer JP. Quantification of the relationship between insulin sensitivity and ${\beta}$-cell function in human subjects: evidence for a hyperbolic function. Diabetes care. 1993 ; 42(11) : 1663-1672. https://doi.org/10.2337/diab.42.11.1663
  11. Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, Baron AD. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care. 2003 ; 26(8) : 2370-2377. https://doi.org/10.2337/diacare.26.8.2370
  12. Tosi F, Muggeo M, Brun E, Spiazzi G, Perobelli L, Zanolin E, Moghetti P. Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus: a randomized, double-blind, comparative study. Metabolism. 2003 ; 52(7) : 862-867. https://doi.org/10.1016/S0026-0495(03)00101-X
  13. Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis‐Mouren G, Desseaux V. On the mechanism of ${\alpha}$-amylase. Eur J Biochem. 2003 ; 270(19) : 3871-3879. https://doi.org/10.1046/j.1432-1033.2003.03733.x
  14. Goldstein BJ, Pans M, Rubin CJ. Multicenter, randomized, double-masked, parallel-group assessment of simultaneous glipizide/metformin as second-line pharmacologic treatment for patients with type 2 diabetes mellitus that is inadequately controlled by a sulfonylurea. Clin Ther. 2003 ; 25(3) : 890-903. https://doi.org/10.1016/S0149-2918(03)80112-1
  15. Brownlee M. The pathobiology of diabetic complications. Diabetes care. 2005 ; 54(6) : 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  16. Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JE. Diabetes and advanced glycoxidation end products. Diabetes care. 2006 ; 29(6) : 1420-1432. https://doi.org/10.2337/dc05-2096
  17. Vlassara H. Advanced glycation end-products and atherosclerosis. Ann Med. 1996 ; 28(5) : 419-426. https://doi.org/10.3109/07853899608999102
  18. Matsuda H, Wang T, Managi H, Yoshikawa M. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg. Med. Chem. 2003 ; 11(24) : 5317-5323. https://doi.org/10.1016/j.bmc.2003.09.045
  19. Edelstein D, Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes care. 1992 ; 41(1) : 26-29.
  20. Robertson RP, Harmon J, Tran POT, Poitout V. ${\beta}$-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes care. 1992 ; 53(1) : 119-124.
  21. Tsujimoto T, Shioyama E, Moriya K, Kawaratani H, Shirai Y, Toyohara M, Fukui H. Pneumatosis cystoides intestinalis following alpha-glucosidase inhibitor treatment: a case report and review of the literature. World J Gastroenterol. 2008 ; 14(39) : 6087-6092. https://doi.org/10.3748/wjg.14.6087
  22. Kihara Y, Ogami Y, Tabaru A, Unoki H, Otsuki M. Safe and effective treatment of diabetes mellitus associated with chronic liver diseases with an alphaglucosidase inhibitor, acarbose. J Gastroenterol. 1997 ; 32(6) : 777-782. https://doi.org/10.1007/BF02936954
  23. Lee EB, Xing MM, Kim DK. Lifespn-exterding and stress resistance properties of brazilin from Caesalpinia sappan in Caenorhabditis elegans. Arch Pharm Res. 2017 ; 40(7) : 825-835. https://doi.org/10.1007/s12272-017-0920-3
  24. Baek NI, Jeon SG, Ahn EM, Hahn JT, Bahn JH, Jang JS, Choi SY. Anticonvulsant compounds from the wood of Caesalpinia sappan L. Arch Pharm Res. 2000 ; 23(4) : 344-348. https://doi.org/10.1007/BF02975445
  25. Oh SR, Kim DS, Jung KY, Lee JJ, Lee HK. Anticomplementary activity of constituents from the heartwood of Caesalpinia sappan. Planta Med. 1998 ; 64(5) : 456-458. https://doi.org/10.1055/s-2006-957481
  26. Choi SY, Yang KM, Jeon SD, Kim JH, Khil LY, Chang TS, Moon CK. Brazilin modulates immune function mainly by augmenting T cell activity in halothane administered mice. Planta Med. 1997 ; 63(5) : 405-408. https://doi.org/10.1055/s-2006-957722
  27. Moon CK, Park KS, Kim SG, Won HS, Chung JH. Brazilin protects cultured rat hepatocytes from BrCCI3-induced toxicity. Drug Chem Toxicol. 1992 ; 15(1) : 81-91. https://doi.org/10.3109/01480549209035174
  28. Hikino H, Taguchi T, Fujimura H, Hiramatsu Y. Antinflammatory principles of Caesalpinia sappan wood and of heamatoxylon campechianum wood1. Planta Med. 1977 ; 31(3) : 214-220. https://doi.org/10.1055/s-0028-1097516
  29. Hung TM, Dang NH, Dat NT. Methanol extract from vietnamese Caesalpinia sappan induces apoptosis in HeLa cells. Biol Res. 2014 ; 47(1) : 20-24. https://doi.org/10.1186/0717-6287-47-20
  30. Kim YM, Kim SG, Khil LY, Moon CK. Brazilin stimulates the glucose transport in 3T3-L1 cells. Planta Med. 1995 ; 61(4) : 297-301. https://doi.org/10.1055/s-2006-958087
  31. Oswal VB, Garg SC. Unsaponifiable matter of the fixed oil from the seeds of Caesalpinnia sappan Linn. Asian J. Chem. 1993 ; 5(3) : 676-676.
  32. Namikoshi M, Nakata H, Yamada H, Nagai M, SAITOH T. Homoisoflavonoids and related compounds. II. Isolation and absolute configurations of 3, 4- dihydroxylated homoisoflavans and brazilins from Caesalpinia sappan L. Chem Pharm Bull. 1987 ; 35(7) : 2761-2773. https://doi.org/10.1248/cpb.35.2761
  33. Namikoshi M, Nakata H, Saitoh T. Homoisoflavonoids from Caesalpinia sappan . Phytochemistry. 1987 ; 26(6) : 1831-1833. https://doi.org/10.1016/S0031-9422(00)82298-0
  34. Nagai M, Nagumo S, Lee SM, Eguchi I, Kawai KI. Protosappanin A, a novel biphenyl compound from Sappan Lignum. Chem Pharm Bull. 1986 ; 34(1) : 1-6. https://doi.org/10.1248/cpb.34.1
  35. Badami S, Moorkoth S, Rai SR, Kannan E, Bhojraj S. Antioxidant activity of Caesalpinia sappan heartwood. Chem Pharm Bull. 2003 ; 26(11) : 1534-1537. https://doi.org/10.1248/bpb.26.1534
  36. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965 ; 16(3) : 144-158.
  37. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958 ; 181(4617) : 1199-1200. https://doi.org/10.1038/1811199a0
  38. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS+ radical cation decolorization assay. Free Radic Biol Med. 1999 ; 26(9) : 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  39. Eom SH, Lee SH, Yoon NY, Jung WK, Jeon YJ, Kim SK, Kim YM. ${\alpha}$-Glucosidase and ${\alpha}$-amylase‐inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric. 2012 ; 92(10) : 2084-2090. https://doi.org/10.1002/jsfa.5585
  40. Vinson JA, Howard TB. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 1996 ; 7(12) : 659-663. https://doi.org/10.1016/S0955-2863(96)00128-3
  41. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial byproducts: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006 ; 99(1) : 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
  42. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance, Nutr Rev. 1998 ; 56(11) : 317-333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  43. Lee SG, Yu MH, Lee SP, Lee IS. Antioxidant activities and induction of apoptosis by methanol extracts from avocado. J Korean Soc Food Sci Nutr. 2008 ; 37(3) : 269-275. https://doi.org/10.3746/jkfn.2008.37.3.269
  44. Shin JA, Lee JH, Kim HS, Choi YH, Cho JH, Yoon KH. Prevention of diabetes: a strategic approach for individual patients. Diabetes Metab Res Rev. 2012 ; 28(2) : 79-84. https://doi.org/10.1002/dmrr.2357
  45. Bischoff H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med. 1995 ; 18(4) : 303-311.