DOI QR코드

DOI QR Code

CONFIGURATION SPACES OF SPATIAL LINKAGES: TAKING COLLISIONS INTO ACCOUNT

  • Blanc, David (Department of Mathematics University of Haifa) ;
  • Shvalb, Nir (Department of Industrial Engineering Department of Mechanical Engineering Ariel University)
  • Received : 2016.10.19
  • Accepted : 2017.05.23
  • Published : 2017.11.30

Abstract

We construct a completed version $\hat{\varrho}({\Gamma})$ of the configuration space of a linkage ${\Gamma}$ in $\mathbb{R}^3$, which takes into account the ways one link can touch another. We also describe a simplified version $\underline{\varrho}({\Gamma})$ which is a blow-up of the space of immersions of ${\Gamma}$ in $\mathbb{R}^3$. A number of simple detailed examples are given.

Keywords

References

  1. B. Chazelle, H. Edelsbruner, K. J. Guibas, M. Sharir, and J. Stol , Lines in Space: Combinatorics and Algorithms, Algorithmica 15 (1996), no. 5, 428-447. https://doi.org/10.1007/BF01955043
  2. H. Crapo and R. J. Penne, Chirality and the isotopy classification of skew lines in projective 3-space, Adv. Math. 103 (1994), no. 1, 1-106. https://doi.org/10.1006/aima.1994.1001
  3. Yu. V. Drobotukhina and O. Ya. Viro, Configurations of skew-lines, Algebra i Analiz 1 (1989), 222-246.
  4. M. S. Farber, Invitation to Topological Robotics, European Mathematical Society, Zurich, 2008.
  5. M. S. Farber, S. Tabachnikov, and S. A. Yuzvinskii, Topological robotics: motion plan- ning in projective spaces, Int. Math. Res. Notices 2003 (2003), no. 34, 1853-1870. https://doi.org/10.1155/S1073792803210035
  6. A. Friedman, Foundations of Modern Analysis, Dover, New York, 1970.
  7. D. H. Gottlieb, Robots and bre bundles, Bull. Soc. Math. Belg. Ser. A 38 (1986), 219-223.
  8. A. S. Hall, Jr., Kinematics and Linkage Design, Prentice-Hall, Englewood Cliffs, NJ, 1961.
  9. J.-C. Hausmann and A. Knutson, The cohomology ring of polygon spaces, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 1, 281-321. https://doi.org/10.5802/aif.1619
  10. M. Holcomb, On the Moduli Space of Multipolygonal Linkages in the Plane, Topology Appl. 154 (2007), no. 1, 124-143. https://doi.org/10.1016/j.topol.2006.04.003
  11. D. Jordan and M. Steiner, Compact surfaces as con guration spaces of mechanical linkages, Israel J. Math. 122 (2001), 175-187. https://doi.org/10.1007/BF02809898
  12. M. Kapovich and J. Millson, On the moduli space of polygons in the Euclidian plane, J. Differential Geom. 42 (1995), no. 2, 430-464. https://doi.org/10.4310/jdg/1214457237
  13. M. Kapovich, The symplectic geometry of polygons in Euclidean space, J. Differential Geom. 44 (1996), no. 3, 479-513. https://doi.org/10.4310/jdg/1214459218
  14. Y. Kamiyama, Topology of equilateral polygon linkages in the Euclidean plane modulo isometry group, Osaka J. Math. 36 (1999), no. 3, 731-745.
  15. Y. Kamiyama and S. Tsukuda, The configuration space of the n-arms machine in the Euclidean space, Topology Appl. 154 (2007), no. 7, 1447-1464. https://doi.org/10.1016/j.topol.2006.04.026
  16. J. M. Lee, Riemannian manifolds. An introduction to curvature, Springer-Verlag, Berlin- New York, 1997.
  17. J. P. Merlet, Parallel Robots, Kluwer Academic Publishers, Dordrecht, 2000.
  18. R. J. Milgram and J. Trinkle, The geometry of configuration spaces of closed chains in two and three dimensions, Homology, Homotopy Appl. 6 (2004), no. 1, 237-267. https://doi.org/10.4310/HHA.2004.v6.n1.a14
  19. J. R. Munkres, Topology, A First Course, Prentice-Hall, Englewood, NJ, 1975.
  20. J. O'Hara, The configuration space of planar spidery linkages, Topology Appl. 154 (2007), no. 2, 502-526. https://doi.org/10.1016/j.topol.2006.07.004
  21. R. J. Penne, Configurations of few lines in 3-space: Isotopy, chirality and planar layouts, Geom. Dedicata 45 (1993), no. 1, 49-82. https://doi.org/10.1007/BF01667403
  22. G. Rodnay and E. Rimon, Isometric visualization of configuration spaces of two-degrees- of-freedom mechanisms, Mechanism and Machine Theory 36 (2001), 523-545. https://doi.org/10.1016/S0094-114X(00)00057-4
  23. J. M. Selig, Geometric Fundamentals of Robotics, Springer-Verlag, Mono. Comp. Sci., Berlin-New York, 2005.
  24. I. R. Shafarevich, Basic Algebraic Geometry. Vol. 1: Varieties in projective space, Springer-Verlag, Berlin-New York, 1994.
  25. N. Shvalb, M. Shoham, and D. Blanc, The Configuration Space of Arachnoid Mechanisms, Fund. Math. 17 (2005), no. 6, 1033-1042.
  26. L. W. Tsai, Robot Analysis - The mechanics of serial and parallel manipulators, Wiley interscience Publication - John Wiley & Sons, New York, 1999.
  27. V. A. Vassiliev, Knot invariants and singularity theory, in Singularity theory (Trieste, 1991), pp. 904-919, World Sci. Publ., River Edge, NJ, 1995.
  28. O. Ya. Viro, Topological problems on lines and points of three-dimensional space, Dokl. Akad. Nauk SSSR 284 (1985), no. 5, 1049-1052.