References
- B. Chazelle, H. Edelsbruner, K. J. Guibas, M. Sharir, and J. Stol, Lines in Space: Combinatorics and Algorithms, Algorithmica 15 (1996), no. 5, 428-447. https://doi.org/10.1007/BF01955043
- H. Crapo and R. J. Penne, Chirality and the isotopy classification of skew lines in projective 3-space, Adv. Math. 103 (1994), no. 1, 1-106. https://doi.org/10.1006/aima.1994.1001
- Yu. V. Drobotukhina and O. Ya. Viro, Configurations of skew-lines, Algebra i Analiz 1 (1989), 222-246.
- M. S. Farber, Invitation to Topological Robotics, European Mathematical Society, Zurich, 2008.
- M. S. Farber, S. Tabachnikov, and S. A. Yuzvinskii, Topological robotics: motion plan- ning in projective spaces, Int. Math. Res. Notices 2003 (2003), no. 34, 1853-1870. https://doi.org/10.1155/S1073792803210035
- A. Friedman, Foundations of Modern Analysis, Dover, New York, 1970.
- D. H. Gottlieb, Robots and bre bundles, Bull. Soc. Math. Belg. Ser. A 38 (1986), 219-223.
- A. S. Hall, Jr., Kinematics and Linkage Design, Prentice-Hall, Englewood Cliffs, NJ, 1961.
- J.-C. Hausmann and A. Knutson, The cohomology ring of polygon spaces, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 1, 281-321. https://doi.org/10.5802/aif.1619
- M. Holcomb, On the Moduli Space of Multipolygonal Linkages in the Plane, Topology Appl. 154 (2007), no. 1, 124-143. https://doi.org/10.1016/j.topol.2006.04.003
- D. Jordan and M. Steiner, Compact surfaces as conguration spaces of mechanical linkages, Israel J. Math. 122 (2001), 175-187. https://doi.org/10.1007/BF02809898
- M. Kapovich and J. Millson, On the moduli space of polygons in the Euclidian plane, J. Differential Geom. 42 (1995), no. 2, 430-464. https://doi.org/10.4310/jdg/1214457237
- M. Kapovich, The symplectic geometry of polygons in Euclidean space, J. Differential Geom. 44 (1996), no. 3, 479-513. https://doi.org/10.4310/jdg/1214459218
- Y. Kamiyama, Topology of equilateral polygon linkages in the Euclidean plane modulo isometry group, Osaka J. Math. 36 (1999), no. 3, 731-745.
- Y. Kamiyama and S. Tsukuda, The configuration space of the n-arms machine in the Euclidean space, Topology Appl. 154 (2007), no. 7, 1447-1464. https://doi.org/10.1016/j.topol.2006.04.026
- J. M. Lee, Riemannian manifolds. An introduction to curvature, Springer-Verlag, Berlin- New York, 1997.
- J. P. Merlet, Parallel Robots, Kluwer Academic Publishers, Dordrecht, 2000.
- R. J. Milgram and J. Trinkle, The geometry of configuration spaces of closed chains in two and three dimensions, Homology, Homotopy Appl. 6 (2004), no. 1, 237-267. https://doi.org/10.4310/HHA.2004.v6.n1.a14
- J. R. Munkres, Topology, A First Course, Prentice-Hall, Englewood, NJ, 1975.
- J. O'Hara, The configuration space of planar spidery linkages, Topology Appl. 154 (2007), no. 2, 502-526. https://doi.org/10.1016/j.topol.2006.07.004
- R. J. Penne, Configurations of few lines in 3-space: Isotopy, chirality and planar layouts, Geom. Dedicata 45 (1993), no. 1, 49-82. https://doi.org/10.1007/BF01667403
- G. Rodnay and E. Rimon, Isometric visualization of configuration spaces of two-degrees- of-freedom mechanisms, Mechanism and Machine Theory 36 (2001), 523-545. https://doi.org/10.1016/S0094-114X(00)00057-4
- J. M. Selig, Geometric Fundamentals of Robotics, Springer-Verlag, Mono. Comp. Sci., Berlin-New York, 2005.
- I. R. Shafarevich, Basic Algebraic Geometry. Vol. 1: Varieties in projective space, Springer-Verlag, Berlin-New York, 1994.
- N. Shvalb, M. Shoham, and D. Blanc, The Configuration Space of Arachnoid Mechanisms, Fund. Math. 17 (2005), no. 6, 1033-1042.
- L. W. Tsai, Robot Analysis - The mechanics of serial and parallel manipulators, Wiley interscience Publication - John Wiley & Sons, New York, 1999.
- V. A. Vassiliev, Knot invariants and singularity theory, in Singularity theory (Trieste, 1991), pp. 904-919, World Sci. Publ., River Edge, NJ, 1995.
- O. Ya. Viro, Topological problems on lines and points of three-dimensional space, Dokl. Akad. Nauk SSSR 284 (1985), no. 5, 1049-1052.