DOI QR코드

DOI QR Code

A VARIANT OF THE QUADRATIC FUNCTIONAL EQUATION ON GROUPS AND AN APPLICATION

  • Received : 2016.10.12
  • Accepted : 2017.02.13
  • Published : 2017.11.30

Abstract

Let G be a group and $\mathbb{C}$ the field of complex numbers. Suppose ${\sigma}:G{\rightarrow}G$ is an endomorphism satisfying ${{\sigma}}({{\sigma}}(x))=x$ for all x in G. In this paper, we first determine the central solution, f : G or $G{\times}G{\rightarrow}\mathbb{C}$, of the functional equation $f(xy)+f({\sigma}(y)x)=2f(x)+2f(y)$ for all $x,y{\in}G$, which is a variant of the quadratic functional equation. Using the central solution of this functional equation, we determine the general solution of the functional equation f(pr, qs) + f(sp, rq) = 2f(p, q) + 2f(r, s) for all $p,q,r,s{\in}G$, which is a variant of the equation f(pr, qs) + f(ps, qr) = 2f(p, q) + 2f(r, s) studied by Chung, Kannappan, Ng and Sahoo in [3] (see also [16]). Finally, we determine the solutions of this equation on the free groups generated by one element, the cyclic groups of order m, the symmetric groups of order m, and the dihedral groups of order 2m for $m{\geq}2$.

Keywords

References

  1. J. Aczel, The general solution of two functional equations by reduction to functions additive in two variables and with aid of Hamel bases, Glasnik Mat.-Fiz. Astronom. Drustvo Mat. Fiz. Hrvatske 20 (1965), 65-73.
  2. J. Aczel and E. Vincze, Uber eine gemeinsame Verallgemeinerung zweier Funktionalgleichungen von Jensen, Publ. Math. Debrecen 10 (1963), 326-344.
  3. J. K. Chung, Pl. Kannappan, C. T. Ng, and P. K. Sahoo, Measures of distance between probability distributions, J. Math. Anal. Appl. 139 (1989), no. 1, 280-292.
  4. V. A. Faiziev and P. K. Sahoo, Solution of Whitehead equation on groups, Math. Bohem. 138 (2013) no. 2, 171-180.
  5. J. L. W. V. Jensen, Om Fundamentalligningers 'Oplosning' ved elementre Midler, Tidsskrift for Matematik 2 (1878), 149-155.
  6. J. L. W. V. Jensen, Om Losning at Funktionalligninger med det mindste Maal af Forudstninger, Nyt tidsskrift for Matematik 8 (1897), 25-28.
  7. P. Jordan and J. von Neumann, On the inner products in linear metric spaces, Ann. of Math. 36 (1935), 719-723. https://doi.org/10.2307/1968653
  8. Pl. Kannappan, On inner product spaces. I, Math. Jpn. 45 (1997), no. 2, 289-296.
  9. Pl. Kannappan, On quadratic functional equation, Int. J. Math. Statist. Sci. 9 (2000), no. 1, 35-60.
  10. Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
  11. S. Kurepa, On the quadratic functional, Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 57-72.
  12. C. T. Ng and H. Y. Zhao, Kernel of the second order Cauchy difference on groups, Aequationes Math. 86 (2013), no. 1-2, 155-170. https://doi.org/10.1007/s00010-012-0174-6
  13. T. Riedel and P. K. Sahoo. On a generalization of a functional equation associated with the distance between the probability distributions, Publ. Math. Debrecen 46 (1995), no. 1-2, 125-135.
  14. T. Riedel, On two functional equations connected with the characterizations of the distance measures, Aequationes Math. 54 (1997), no. 3, 242-263. https://doi.org/10.1007/BF02755459
  15. P. K. Sahoo, On a functional equation associated with stochastic distance measures, Bull. Korean Math. Soc. 36 (1999), no. 2, 287-303.
  16. P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, Chapman and Hall/CRC, Boca Raton, FL, 2011.
  17. P. Sinopoulos, Functional equations on semigroups, Aequationes Math. 59 (2000), no. 3, 255-261. https://doi.org/10.1007/s000100050125
  18. H. Stetaekr, Functional Equations on Groups, World Scientific Publishing, Singapore 2013.
  19. D. Yang, The quadratic functional equation on groups, Publ. Math. Debrecen 66 (2004), no. 3, 327-348.
  20. J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950), no. 2, 51-110. https://doi.org/10.2307/1969511