References
- H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 10, 281-322.
- H. Akbar-Zadeh, Inititiation to Global Finslerian Geometry, vol. 68, Math. Library, Northholland, 2006.
- S. Azami and A. Razavi, Existence and uniqueness for solution of Ricci flow on Finsler manifolds, Int. J. Geom. Methods Mod. Phy. 10 (2013), no. 3, 1250091, 21 pp. https://doi.org/10.1142/S0219887812500910
- D. Bao, S. Chern, and Z. Shen, An Introduction to Riemann-Finsler geometry, GTM 200, Springer-verlag, 2000.
- B. Bidabad and M. Yar Ahmadi, On quasi-Einstein Finsler spaces, Bull. Iranian Math. Soc. 40 (2014), no. 4, 921-930.
- B. Bidabad, On compact Ricci solitons in Finsler geometry, C. R. Math. Acad. Paris 353 (2015), no. 11, 1023-1027. https://doi.org/10.1016/j.crma.2015.09.012
- B. Bidabad, Convergence of Finslerian metrics under Ricci flow, Sci. China Math. 59 (2016), no. 4, 741-750. https://doi.org/10.1007/s11425-015-5092-3
- S. Brendle, Ricci Flow and the Sphere Theorem, AMS, Providence, Rhode Island, 2010.
- B. Chow and D. Knopf, The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, Vol. 110, AMS, Providence, RI, 2004.
- R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. https://doi.org/10.4310/jdg/1214436922
- C. Hopper and B. Andrews, The Ricci Flow in Riemannian Geometry, Springer-Verlag, 2010.
- S. Lakzian, Differential Harnack estimates for positive solutions to heat equation under Finsler-Ricci flow, Pacific J. Math. 278 (2015), no. 2, 447-462. https://doi.org/10.2140/pjm.2015.278.447
- B. Shen, Twisted Ricci flow on a class of Finsler metrics and its solitons, Differential Geom. Appl. 46 (2016), 132-145. https://doi.org/10.1016/j.difgeo.2016.02.005
- S. I. Vacaru, Metric compatible or non-compatible Finsler-Ricci flows, Int. J. Geom. Methods Mod. Phy. 9 (2012), no. 5, 1250041, 26 pp. https://doi.org/10.1142/S0219887812500417