DOI QR코드

DOI QR Code

SOME RESULTS OF f-BIHARMONIC MAPS INTO A RIEMANNIAN MANIFOLD OF NON-POSITIVE SECTIONAL CURVATURE

  • He, Guoqing (School of Science Nanjing University of Science and Technology) ;
  • Li, Jing (School of Science Nanjing University of Science and Technology) ;
  • Zhao, Peibiao (School of Science Nanjing University of Science and Technology)
  • Received : 2016.09.24
  • Accepted : 2017.06.21
  • Published : 2017.11.30

Abstract

The authors investigate f-biharmonic maps u : (M, g) ${\rightarrow}$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature, and derive that if $\int_{M}f^p{\mid}{\tau}(u){\mid}^pdv_g$ < ${\infty}$, $\int_{M}{\mid}{\tau}(u){\mid}^2dv_g$ < ${\infty}$ and $\int_{M}{\mid}du{\mid}^2dv_g$ < ${\infty}$, then u is harmonic. When u is an isometric immersion, the authors also get that if u satisfies some integral conditions, then it is minimal. These results give an affirmative partial answer to conjecture 4 (generalized Chen's conjecture for f-biharmonic submanifolds).

Keywords

References

  1. M. Ara, Geometry of F-harmonic maps, Kodai Math. J. 22 (1999), no. 2, 243-263. https://doi.org/10.2996/kmj/1138044045
  2. M. Ara, Instability and nonexistence theorems for F-harmonic maps, Illinois J. Math. 45 (2001), no. 2, 657-679.
  3. M. Ara, Stability of F-harmonic maps into pinched manifolds, Hiroshima Math. J. 31 (2001), no. 1, 171-181.
  4. P. Baird, A. Fardoun, and S. Ouakkas, Liouville-type theorems for biharmonic maps between Riemannian manifolds, Adv. Calc. Var. 3 (2010), no. 1, 49-68. https://doi.org/10.1515/ACV.2010.003
  5. P. Baird and D. Kamissoko, On constructing biharmonic maps and metrics, Ann. Global Anal. Geom. 23 (2003), no. 1, 65-75. https://doi.org/10.1023/A:1021213930520
  6. A. Balmus, S. Montaldo, and C. Oniciuc, Biharmonic maps between warped product manifolds, J. Geom. Phys. 57 (2007), no. 2, 449-466. https://doi.org/10.1016/j.geomphys.2006.03.012
  7. R. Caddeo, S. Montaldo, and C. Oniciuc, Biharmonic submanifolds in sphere, Israel J. Math. 130 (2002), no. 1, 109-123. https://doi.org/10.1007/BF02764073
  8. R. Caddeo, S. Montaldo, and P. Piu, On biharmonic maps, Global di erential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), 286-290, Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001.
  9. B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Michigan State University, 1988.
  10. L. F. Cheung and P. F. Leung, Some results on stable p-harmonic maps, Glasgow Math. J. 36 (1994), no. 1, 77-80. https://doi.org/10.1017/S0017089500030561
  11. Y. J. Chiang, Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields, Frontiers in Mathematics, 2013.
  12. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1-68. https://doi.org/10.1112/blms/10.1.1
  13. J. Eells, Selected topics in harmonic maps, CBMS, 50, Amer. Math. Soc. 1983.
  14. M. P. Gaffney, A special Stoke's theorem for complete Riemannian manifold, Ann. Math. 60 (1954), no. 1, 140-145. https://doi.org/10.2307/1969703
  15. Y. B. Han, Some results of p-biharmonic submanifolds in a Riemannian manifold of non-positive curvature, J. Geom. 106 (2015), no. 3, 471-482. https://doi.org/10.1007/s00022-015-0259-1
  16. Y. B. Han, Some results of exponentially biharmonic maps into a non-positively curved manifold, Bull. Korean Math. Sco. 53 (2016), no. 6, 1651-1670. https://doi.org/10.4134/BKMS.b150863
  17. Y. B. Han and S. X. Feng, Some results of F-biharmonic maps, Acta Math. Univ. Comenianae 83 (2014), no. 1, 47-66.
  18. Y. B. Han and W. Zhang, Some results of p-biharmonic maps into a non-positively curved manifold, J. Korean Math. Soc. 52 (2015), no. 5, 1097-1108. https://doi.org/10.4134/JKMS.2015.52.5.1097
  19. P. Hornung and R. Moser, Intrinsically p-biharmonic maps, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 597-620. https://doi.org/10.1007/s00526-013-0688-3
  20. G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), no. 2, 130-144.
  21. G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. 7A (1986), 388-402; the English translation, Note di Matematica. 28 (2009), 209-232.
  22. Y. X. Li and Y. D. Wang, Bubbling location fot f-harmonic maps and inhomogeneous Landan-Lifshitz equations, Comment Math Helv. 81 (2006), 433-448.
  23. A. Lichnercwicz, Applications harmoniques et varietes kahleriennes, In: Symposia Mathematica, vol. III. London: Academic Press, 1970, 341-402.
  24. J. C. Liu, Nonexistence of stable exponentially harmonic maps from or into compact convex hypersurfaces in $R^{n+1}$, Turkish J. Math. 32 (2008), no. 2, 117-126.
  25. E. Loubean, S. Montaldo, and C. Oniciuc, The stress-energy tensor for biharmonic maps, Math. Z. 259 (2008), no. 3, 503-524. https://doi.org/10.1007/s00209-007-0236-y
  26. E. Loubean and C. Oniciuc, The index of biharmonic maps in spheres, Compos. Math. 141 (2005), no. 3, 729-745. https://doi.org/10.1112/S0010437X04001204
  27. W. J. Lu, On f-biharmonic maps between Riemannian manifolds, Clarendon Press, 2013.
  28. Y. Luo, On biharmonic submanifolds in nonpositively curved manifolds, Differ. Geom. Appl. 35 (2014), 1-8.
  29. S. Maeta, Biharmonic maps from a complete Riemannian manifold into a non-positively curved manifold, Ann. Global Anal. Geom. 46 (2014), no. 1, 75-85. https://doi.org/10.1007/s10455-014-9410-8
  30. N. Nakauchi, H. Urakawa, and S. Gudmundsson, Biharmonic maps into a Riemannian manifold of non-positive curvature, Results Math. 63 (2013), 467-474.
  31. N. Nakauchi, Biharmonic maps into a Riemannian manifold of non-positive curvature, Geom. Dedicata 169 (2014), 263-272. https://doi.org/10.1007/s10711-013-9854-1
  32. C. Oniciuc, Biharmonic maps between Riemannian manifold, An. Stint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 48 (2002), no. 2, 237-248.
  33. Y. L. Ou, On f-harmonic morphisms between Riemannian manifolds, Chin. Ann. Math. Ser. B 35 (2014), no. 2, 225-236. https://doi.org/10.1007/s11401-014-0825-0