DOI QR코드

DOI QR Code

PD-1 deficiency protects experimental colitis via alteration of gut microbiota

  • Park, Seong Jeong (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Kim, Ji-Hae (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Song, Mi-Young (Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology) ;
  • Sung, Young Chul (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Seung-Woo (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Park, Yunji (Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology)
  • Received : 2017.08.23
  • Accepted : 2017.09.22
  • Published : 2017.11.30

Abstract

Programmed cell death-1 (PD-1) is a coinhibitory molecule and plays a pivotal role in immune regulation. Here, we demonstrate a role for PD-1 in pathogenesis of inflammatory bowel disease (IBD). Wild-type (WT) mice had severe wasting disease during experimentally induced colitis, while mice deficient for PD-1 ($PD-1^{-/-}$) did not develop colon inflammation. Interestingly, $PD-1^{-/-}$ mice cohoused with WT mice became susceptible to colitis, suggesting that resistance of $PD-1^{-/-}$ mice to colitis is dependent on their gut microbiota. 16S rRNA gene-pyrosequencing analysis showed that $PD-1^{-/-}$ mice had altered composition of gut microbiota with significant reduction in Rikenellaceae family. These altered colon bacteria of $PD-1^{-/-}$ mice induced less amount of inflammatory mediators from colon epithelial cells, including interleukin (IL)-6, and inflammatory chemokines. Taken together, our study indicates that PD-1 expression is involved in the resistance to experimental colitis through altered bacterial communities of colon.

Keywords

References

  1. Kamada, N, Seo SU, Chen GY and Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13, 321-335 https://doi.org/10.1038/nri3430
  2. Belkaid Y and Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157, 121-141 https://doi.org/10.1016/j.cell.2014.03.011
  3. Yang J-Y and Kweon M-N (2016) The gut microbiota: a key regulator of metabolic disease. BMB Rep 49, 536-541 https://doi.org/10.5483/BMBRep.2016.49.10.144
  4. Matsuoka K and Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37, 47-55 https://doi.org/10.1007/s00281-014-0454-4
  5. Maloy KJ and Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298-306 https://doi.org/10.1038/nature10208
  6. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N and Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acd Sci U S A 104, 13780-13785 https://doi.org/10.1073/pnas.0706625104
  7. Tong M, Li X, Wegener P et al (2013) A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One 8, e80702 https://doi.org/10.1371/journal.pone.0080702
  8. Manichanh C, Rigottier-Gois L, Bonnaud E et al (2006) Reduced diversity of fecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205-211 https://doi.org/10.1136/gut.2005.073817
  9. Zenewicz LA, Antov A and Flavell RA (2009) CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med 15, 199-207 https://doi.org/10.1016/j.molmed.2009.03.002
  10. Stallmach A, Hagel S and Bruns T (2010) Adverse effects of biologics used for treating IBD. Best Pract Res Clin Gastroenterol 24, 167-182
  11. Carter L, Fouser LA, Jussif J et al (2002) PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 32, 634-643 https://doi.org/10.1002/1521-4141(200203)32:3<634::AID-IMMU634>3.0.CO;2-9
  12. Cho HY, Choi EK, Lee SW et al (2009) Programmed death-1 receptor negatively regulates LPS-mediated IL-12 production and differentiation of murine macrophage RAW264.7 cells. Immunolo Lett 127, 39-47 https://doi.org/10.1016/j.imlet.2009.08.011
  13. Francisco LM, Sage PT and Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236, 219-242 https://doi.org/10.1111/j.1600-065X.2010.00923.x
  14. Kanai T, Totsuka T, Uraushihara K et al (2003) Blockade of B7-H1 suppresses the development of chronic intestinal inflammation. J Immunol 171, 4156-4163 https://doi.org/10.4049/jimmunol.171.8.4156
  15. Scadiuzzi L, Ghosh K, Hofmeyer KA et al (2014) Tissue-expressed B7-H1 critically controls intestinal inflammation. Cell Rep 6, 625-632 https://doi.org/10.1016/j.celrep.2014.01.020
  16. Solomon S, Mansor S, Mallon P et al (2010) The dextran sulphate sodium (DSS) model of colitis: an overview. Comp Clin Pathol 19, 235-239 https://doi.org/10.1007/s00580-010-0979-4
  17. Yao S, Wang S, Zhu Y et al (2009) PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 113, 5811-5818 https://doi.org/10.1182/blood-2009-02-203141
  18. Kim DJ, Kim KS, Song MY et al (2012) Delivery of IL-12p40 ameliorates DSS-induced colitis by suppressing IL-17A expression and inflammation in the intestinal mucosa. Clin Immunol 144, 190-199 https://doi.org/10.1016/j.clim.2012.06.009
  19. Elinav E, Strowig T, Kau AL et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745-757 https://doi.org/10.1016/j.cell.2011.04.022
  20. Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228-231 https://doi.org/10.1126/science.1179721
  21. Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11, 76-83 https://doi.org/10.1038/ni.1825
  22. Zenewics LA, Yin X, Wang G et al (2013) IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J Immunol 190, 5306-5312 https://doi.org/10.4049/jimmunol.1300016
  23. Kawamoto S, Tran TH, Maruya M et al (2012) The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485-489 https://doi.org/10.1126/science.1217718
  24. Kim KA, Gu W, Lee IA et al (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7, e47713 https://doi.org/10.1371/journal.pone.0047713
  25. Jiang HQ, Kushnir N, Thurnheer MC et al (2002) Monoassociation of SCID mice with Helicobacter muridarum, but not four other enterics, provokes IBD upon receipt of T cells. Gastroenterology 122, 1346-1354 https://doi.org/10.1053/gast.2002.32959
  26. Dijkstra G, Yuvaraj S, Jian HQ et al (2007) Early bacterial dependent induction of inducible nitric oxide synthase (iNOS) in epithelial cells upon transfer of CD45RB(high) CD4(+) T cells in a model for experimental colitis. Inflamm Bowel Dis 13, 1467-1474 https://doi.org/10.1002/ibd.20262
  27. Danese S and Gasbarrini A (2005) Chemokines in inflammatory bowel disease. J Clin Pathol 58, 1025-1027 https://doi.org/10.1136/jcp.2005.030916
  28. Uguccioni M, Cionchetti P, Robbiani DF et al (1999) Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol 155, 331-336 https://doi.org/10.1016/S0002-9440(10)65128-0
  29. Hyun JG, Lee G, Brown JB et al (2005) Anti-interferoninducible chemokine, CXCL10, reduces colitis by impairing T helper-1 induction and recruitment in mice. Inflamm Bowel Dis 11, 799-805 https://doi.org/10.1097/01.MIB.0000178263.34099.89
  30. Seong MA Woo JK, Kang JH et al (2015) Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-kB signaling and protects intestinal epithelial barrier. BMB Rep 48, 419-425 https://doi.org/10.5483/BMBRep.2015.48.7.039
  31. Geem D, Medina-Contreras O, Kim W, Huang CS and Denning TL (2012) Isolation and characterization of dendritic cells and macrophages from the mouse intestine. J Vis Exp e4040

Cited by

  1. Checkpoint inhibitor colitis pp.0267-1379, 2018, https://doi.org/10.1097/MOG.0000000000000482
  2. Catechin supplemented in a FOS diet induces weight loss by altering cecal microbiota and gene expression of colonic epithelial cells vol.9, pp.5, 2018, https://doi.org/10.1039/C8FO00035B