DOI QR코드

DOI QR Code

Using asymptotic curve number regression method estimation of NRCS curve number and optimum initial loss ratio for small watersheds

점근유출곡선지수법을 이용한 소유역 유출곡선지수 산정 및 최적 초기손실률 결정

  • Yu, Ji Soo (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Dong-Hyeok (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Ahn, Jae-Hyun (Department of Civil Engineering, Seokyeong University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University (ERICA))
  • 유지수 (한양대학교 대학원 건설환경공학과) ;
  • 박동혁 (한양대학교 대학원 건설환경공학과) ;
  • 안재현 (서경대학교 공과대학 토목건축공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경공학과)
  • Received : 2017.07.06
  • Accepted : 2017.09.26
  • Published : 2017.11.30

Abstract

Two main parameters of NRCS-CN method are curve numbers and intial loss ratio. They are generally selected according to the guideline of US National Engineering Handbook, however, they might cause errors on estimated runoff in Korea because there are differences between soil types and hydrological characteristics of Korean watersheds and those of United States. In this study, applying asymptotic CN regression method, we suggested eight modified NRCS-CN models to decide optimum runoff estimation model for Korean watersheds. RSR (RMSE-observations standard deviation ratio) and NSE (Nash-Sutcliffe efficiency) were used to evaluate model performance, consequently M6 for gauged basins (Avg. RSR was 0.76, Avg. NSE was 0.39) and M7 for ungauged basins (Avg. RSR was 0.82, Avg. NSE was 0.31) were selected. Furthermore it was observed that initial loss ratios ranging from 0.01 to 0.10 were more adequate than the fixed ${\lambda}=0.20$ in most of basins.

NRCS-CN 방법을 이용해서 유출량을 결정하는 과정에 가장 큰 영향을 주는 변수는 유출곡선지수와 초기손실률이다. 수자원 실무에서 유출곡선지수와 초기손실률은 대부분 미국 National Engineering Handbook의 지침에 따라 결정하지만, 우리나라 유역의 토양 및 수문학적 특성은 미국과 다르기 때문에 유출량을 과대 또는 과소 산정하게 된다. 따라서 본 연구에서는 우리나라 유역특성에 적합한 유효우량을 산정하기 위하여 점근유출곡선지수법을 이용하여 총 8개의 유효우량 산정 모형(M1~M8)을 제시하였다. RSR (RMSE-observations standard deviation ratio)과 NSE(Nash-Sutcliffe Efficiency)의 두 가지 지표를 이용하여 모형을 평가하였으며, 그 결과 계측 유역에서는 M6 (평균 RSR: 0.76, 평균 NSE: 0.39), 미계측 유역에서는 M7 (평균 RSR: 0.82, 평균 NSE: 0.31)이 최적의 모형으로 선정되었다. 또한 대부분의 유역에서 기존에 사용되고 있던 초기손실률 0.20보다 더 작은 값(0.01-0.10)을 적용할 때 더 좋은 결과를 나타내는 것을 확인하였다.

Keywords

References

  1. Ahn, J.-H., and Lee, S.-J. (2017). "Development of equations for time of concentration and storage coefficient available for Korean watersheds." Magazine of Korea Water Resources Association, Vol. 50, No. 1, pp. 26-31.
  2. Ajmal, M., and Kim, T.-W. (2015). "Quantifying excess stormwater using SCS-CN-based rainfall runoff models and different curve number determination methods." Journal of Irrigation and Drainage Engineering, Vol. 141, No. 3, pp. 04014058. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000805
  3. Ajmal, M., Moon, G.-W., Ahn, J.-H., and Kim, T.-W. (2015). "Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korea watersheds." Journal of Hydro-environment Research, Vol. 9, No. 4, pp. 592-603.
  4. Baltas, E. A., Dervos, N. A., and Mimikow, M. A. (2007). "Technical note: Determination of the SCS initial abstraction ratio in an experimental watershed in Greece." Hydrology and Earth System Science, Vol. 11, No. 6, pp. 1825-1829. https://doi.org/10.5194/hess-11-1825-2007
  5. Beck, H. E., de Jue, R. A. M., Schellekens, J., van Dijk, A. I. J. M., and Bruijnzeel, L. A. (2009). "Improving curve number based strom runoff estimates using soil moisture proxies." Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 2, No. 4, pp. 250-259. https://doi.org/10.1109/JSTARS.2009.2031227
  6. D'Asaro, F., Grillone, G., and Hawkins, R. H. (2014). "Curve number: empirical evaluation and comparison with curve number handbook tables in Sicily." Journal of Hydrologic Engineering, Vol. 19, No. 12, pp. 04014035. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000997
  7. Hawkins, R. H. (1993). "Asymptotic determination of runoff curve number from data." Journal of Irrigation and Drainage Engineering, Vol. 119, No. 2, pp. 334-343. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:2(334)
  8. Hawkins, R. H., Ward, T. J., Woodward, D. E., and Van Mullem, J. A. (2009). Curve number hydrology: State of the practice. American Society of Civil Engineers.
  9. Jain, M. K., Mishra, S. K., Suresh Babu, P., and Venugopal, K. (2006). "On the Ia-S relation of the SCS-CN method." Hydrology Research, Vol. 37, No. 3, pp. 261-2875. https://doi.org/10.2166/nh.2006.011
  10. Kim, J., Yoo, C., Park, M., and Joo, J. (2014). "Evaluation of problems to apply runoff curve number to mountain area in Korea." Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 5, pp. 293-298. https://doi.org/10.9798/KOSHAM.2014.14.5.293
  11. Kowalik, T., and Walega, A. (2015). "Estimation of CN parameter for small agricultural watersheds using asymptotic functions." Water, Vol. 7, No. 3, pp. 939-955. https://doi.org/10.3390/w7030939
  12. Ministry of Land, Transport and Maritime Affairs (2012). Design flood estimation guidelines.
  13. Mishra, S. K., Sahu, R. K., Eldho, T. I., and Jain, M. K. (2006). "An improving $I_a$-S relationship incorporating antecedent moisture in SCS-CN methodology." Water Resources Management, Vol. 20, No. 5, pp. 643-660. https://doi.org/10.1007/s11269-005-9000-4
  14. Mishra, S. K., and Singh, V. P. (2003). Soil Conservation Service Curve Number (SCS-CN) methodology. Kluwer Academic Publishers.
  15. Moon, G.-W., Yoo, J.-Y., and Kim, T.-W. (2014). "Comparing calculation techniques for effective rainfalls using NRCS-CN method: focused on introducing weighted average and slope-based CN." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 4, pp. 1171-1180. https://doi.org/10.12652/Ksce.2014.34.4.1171
  16. Park, D.-H., Ajmal, M., Ahn, J.-H., and Kim, T.-W. (2015). "Improving initial abstraction method of NRCS-CN for estimating effective rainfall." Journal of Korea Water Resources Association, Vol. 48, No. 6, pp. 491-500. https://doi.org/10.3741/JKWRA.2015.48.6.491
  17. Park, D.-H., Kang, D.-S., Ahn, J.-H., and Kim, T.-W. (2016). "Redetermination of curve number using genetic algorithm and CN aligner equation." Journal of Korea Water Resources Association, Vol. 49, No. 5, pp. 373-380. https://doi.org/10.3741/JKWRA.2016.49.5.373
  18. Ryu, J., Jung, Y., Kong, D. S., Park, B. K., Kim, Y. S., Engel, B. A., and Lim, K. J. (2016). "Approach of land cover based asymptotic curve number regression equation to estimate runoff." Irrigation and Drainage, Vol. 65, No. S2, pp. 94-104.
  19. Shi, Z.-H., Chen, L.-D., Fang, N.-F., Qin, D.-F., and Cai, C.-F. (2009). "Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China." Catena, Vol. 77, No. 1, pp. 1-7. https://doi.org/10.1016/j.catena.2008.11.006
  20. Sloto, R. A., and Crouse, M. Y. (1996). HYSEP: A computer program for streamflow hydrograph separation and analysis. U.S. Geological Survey.
  21. Tedlela, N. H., McCutcheon, S. C., Rasmussen, T. C., Hawkins, R. H., Swank, W. T., Campbell, J. L., Adams, M. B., Jackson, C. R., and Tollner, E. W. (2012). "Runoff curve number for 10 small forested watersheds in the mountains of the eastern United States." Journal of Hydrological Engineering, Vol. 17, No. 11, pp. 1188-1198. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000436
  22. Yuan, Y., Nie, W., McCutcheon, S. C., and Taguas, E. V. (2014). "Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona." Hydrological Processes, Vol. 28, No. 3, pp. 774-783. https://doi.org/10.1002/hyp.9592