DOI QR코드

DOI QR Code

수질화학 조성이 수자원환경에서의 미세 부유입자 응집 거동에 미치는 영향 연구

Investigation of the effect of water chemistry on biologically mediated flocculation in the aquatic environment

  • 최정우 (경북대학교 과학기술대학교 건설방재공학부) ;
  • 이병준 (경북대학교 과학기술대학교 건설방재공학부)
  • Choi, Jeong Wooa (School of Disaster Prevention and Environmental Engineering, Kyungpook National University) ;
  • Lee, Byung Joon (School of Disaster Prevention and Environmental Engineering, Kyungpook National University)
  • 투고 : 2017.08.16
  • 심사 : 2017.09.09
  • 발행 : 2017.11.30

초록

생체고분자물질은 수자원환경에서 점토, 미생물, 바이오매스 등 부유입자들을 응집시키고, 침전, 퇴적시키는 역할을 한다. 본 연구는 다양한 수질화학 조건이 생체고분자물질에 의한 부유입자 응집에 미치는 영향을 파악하고자, 수질화학 조건을 제어하여 응집실험을 수행하였다. 각 응집실험은 이온강도, 2가 양이온 농도, 휴믹물질 분율이 제어된 실험조건에서 Kaolinite 현탄액에 생체고분자물질인 Xanthan Gum을 주입하여 수행하였다. 수체가 가지는 응집능은 응집체 크기 및 잔류 고형물 농도를 측정을 통하여 평가하였다. 본 연구에서, 이온강도 증가는 점토입자 및 생체고분자물질 간 정전기적 반발력을 감소시키고 생체고분자물질이 점토입자 간 가교를 형성하여 응집을 증대시킨 것으로 파악되었다. 이온강도가 0.001에서 0.1 M NaCl로 증대될 경우, 응집을 증진시켜 응집체 크기는 약 3배 이상 증대되고 부유고형물농도는 약 2.5배 이상 저감되었다. 또한, 2가 양이온이 수체에 존재하는 경우, 점토입자-생체고분자물질 혹은 생체고분자물질 상호 간 가교를 형성하여, 즉 점토-$Ca^{2+}$-고분자 또는 고분자-$Ca^{2+}$-고분자 가교를 형성하여, 생체고분자물질에 의한 부유입자 응집을 증대시켰다. 수체에 $Ca^{2+}$가 낮은 농도라도 존재할 경우, 응집을 크게 증진시켜 부유고형물농도가 원 주입농도에 비하여 20배 이상 저감되는 것으로 나타났다. 하지만, 휴믹물질이 존재하는 경우, 점토입자 표면에 흡착되어 점토입자의 정전기적 반발력을 증대시켜 생체고분자물질의 흡착을 방해하고 응집을 감소시켰다. 수체에 휴믹물질이 존재할 경우, 응집을 저감시켜 부유고형물농도는 저감되지 않고 원 주입농도와 유사하게 나타났다. 본 연구의 결과는 수자원환경에서 부유입자 및 퇴적물 거동을 이해하고 수질 및 퇴적물에 대한 최적 관리 방안을 도출하기 위한 기초 자료로 활용될 수 있으리라 기대된다.

Extracellular Polymeric Substances (EPS) in the water environment assemble fine, colloidal particles, such as clays, microorganisms and biomass, in large flocs, which are eventually subject to sedimentation and deposition and determine water/sediment quality and quantity. This study hence aimed to investigate the way that water and colloidal chemistry affects EPS-mediated flocculation of colloidal particles, using a jar-test experiment. Especially, ionic strength, divalent cation and humic substances concentrations were selected as experimental variables in the jar-test experiments, to elucidate their effects on EPS-mediated flocculation. A higher ionic strength increased flocculation capability, reducing electrostatic repulsion between EPS-attached colloidal particles and enhancing particle aggregation. 0.1 M NaCl ionic strength had higher flocculation capability, with 3 times larger floc size and 2.5 times lower suspended solid concentration, than 0.001 M NaCl. Divalent cations, such as $Ca^{2+}$, built divalent cationic bridges between colloidal particles and EPS (i.e., $colloid-Ca^{2+}-EPS$ or $EPS-Ca^{2+}-EPS$) and hence made colloidal particles to build into large, settelable flocs. A small $Ca^{2+}$ concentration enhanced flocculation capability, reducing suspended solid concentration 20 times lower than the initial dosed concentration. However, humic substances, adsorbed on colloidal particles, reduced flocculation, because they blocked EPS adsorption on colloidal particles and increased negative charges and electrostatic repulsion of colloidal particles. Suspended solid concentration in the tests with humic substances remained as high as the initial dosed concentration, indicating stabilization rather than flocculation. Findings about EPS-mediated flocculation in this research will be used for better understanding the fate and transport of colloidal particles in the water environment and for developing the best management practices for water/sediment quality.

키워드

참고문헌

  1. Bade, D., Carpenter, S., Cole, J., Pace, M., Kritzberg, E., Van de Bogert, M., Cory, R., and McKnight, D. (2007). "Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions." Biogeochemistry, Vol. 84, pp. 115-129. https://doi.org/10.1007/s10533-006-9013-y
  2. Chassagne, C., Mietta, F., and Winterwerp, J. C. (2009). "Electrokinetic study of kaolinite suspensions." Journal of Colloid and Interface Science, Vol. 336, No. 1, pp. 352-359. https://doi.org/10.1016/j.jcis.2009.02.052
  3. Chen, M., Wartel, S., and Temmerman, S. (2005). "Seasonal variation of floc characteristics on tidal flats, the Scheldt estuary." Hydrobiologia, Vol. 540, pp. 181-195. https://doi.org/10.1007/s10750-004-7143-6
  4. Droppo, I. (2001). "Rethinking what constitutes suspended sediment." Hydrological Processes, Vol. 15, pp. 1551-1564. https://doi.org/10.1002/hyp.228
  5. Droppo, I., Leppard, G., Liss, S., and Milligan, T. (2005). Flocculation in natural and engineered environmental systems. CRC Press Inc., Boca Raton, Florida, USA.
  6. Furukawa, Y., Reed, A. H., and Zhang, G. (2014). "Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs." Geochemical Transactions, Vol. 15, pp. 1-9. https://doi.org/10.1186/1467-4866-15-1
  7. Gorczyca, B., and Ganczarczyk, J. (1996). "Image analysis of alum coagulated mineral suspensions." Environmental Technology, Vol. 17, pp. 1361-1369. https://doi.org/10.1080/09593331708616505
  8. Hwang, K., Kim, H., and Ahn, I. (2008). "A laboratory study on erosional properties of fine cohesive sediments from Saemankeum Artificial Lake." Journal of Korea Water Resources Association, Vol. 41, No. 5, pp. 473-482. https://doi.org/10.3741/JKWRA.2008.41.5.473
  9. Kretzschmar, R., Holthoff, H., and Sticher, H. (1998). "Influence of pH and humic acid on coagulation kinetics of kaolinite: a dynamic light scattering study." Journal of Colloid and Interface Science, Vol. 202, pp. 95-103. https://doi.org/10.1006/jcis.1998.5440
  10. Lee, B., Toorman, E., and Fettweis, M. (2015). "Multimodal particle size distributions of fine-grained sediments: mathematical modeling and field investigation." Ocean Dynamics, Vol. 64, No. 3, pp. 429-441. https://doi.org/10.1007/s10236-014-0692-y
  11. Lee, B., Hur, J., and Toorman, E. A. (2017), "Seasonal variation in flocculation potential of river water: roles of the organic matter pool." Water, Vol. 9, No. 5, pp. 335. https://doi.org/10.3390/w9050335
  12. Lee, B., Schlautman, M. A., Toorman, E., and Fettweis, M. (2012). "Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides." Water Research, Vol. 46, pp. 5696-5706. https://doi.org/10.1016/j.watres.2012.07.056
  13. Lee, B., and Toorman, E. (2013). "Evaluation of the two class population balance equation for predicting the bimodal flocculation of cohesive sediments in turbulent flow." Journal of Korea Water Resources Association, Vol. 48, No. 3, pp. 233-243. https://doi.org/10.3741/JKWRA.2015.48.3.233
  14. Maggi, F. (2005). Flocculation dynamics of cohesive sediment. Ph.D. dissertation, Delft University of Technology, Netherlands. pp. 136.
  15. Maggi, F. (2009). "Biological flocculation of suspended particles in nutrient-rich aqueous ecosystems." Journal of Hydrology, Vol. 376, pp. 116-125. https://doi.org/10.1016/j.jhydrol.2009.07.040
  16. Maggi, F. (2013). "The settling velocity of mineral, biomineral, and biological particles and aggregates in water." Journal of Geophysical Research: Oceans, Vol. 118, pp. 2118-2132. https://doi.org/10.1002/jgrc.20086
  17. Maggi, F., and Tang, F. (2015). "Analysis of the effect of organic matter content on the architecture and sinking of sediment aggregates." Marine Geology, Vol. 363, pp. 102-111. https://doi.org/10.1016/j.margeo.2015.01.017
  18. Mietta, F. (2010). Evolution of the floc size distribution of cohesive sediments. Ph.D. dissertation, Delft University of Technology, Netherlands. pp. 157.
  19. Mietta, F., Chassagne, C., and Winterwerp, J. (2009b). "Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration." Journal of Colloid and Interface Science, Vol. 336, pp. 134-141. https://doi.org/10.1016/j.jcis.2009.03.044
  20. Mietta, F., Chassagne, C., Manning, A., and Winterwerp, J. C. (2009a). "Influence of shear rate, organic matter content, pH and salinity on mud flocculation." Ocean Dynamics, Vol. 59, pp. 751-763. https://doi.org/10.1007/s10236-009-0231-4
  21. Partheniades, E. (2009). Cohesive sediments in open channels: erosion, transport and deposition. Butterworth-Heinemann, Oxford, UK.
  22. Plach, J., Elliotte, A., Droppo, I., and Warren, L. (2011). "Physical and ecological controls on freshwater floc trace metal dynamics." Environmental Science and Technology, Vol. 45, pp. 2157-2164. https://doi.org/10.1021/es1031745
  23. Rautio, M., Mariash, H., and Forsstrom, L. (2011). "Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake." Limnology and Oceanography, Vol. 56, pp. 1513-1524. https://doi.org/10.4319/lo.2011.56.4.1513
  24. Stumm, W., and Morgan, J. (1996). Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley & Sons Inc., New York, NY, USA.
  25. Tang, F., and Maggi, F. (2016). "Mesocosm experiment of suspended particulate matter dynamics in nutrient-and biomass-affected waters." Water Research, Vol. 89, pp. 76-86. https://doi.org/10.1016/j.watres.2015.11.033
  26. Van der Lee, W. (2000). "Temporal variation of floc size and settling velocity in the Dollard estuary." Continental Shelf Research, Vol. 20, pp. 1495-1511. https://doi.org/10.1016/S0278-4343(00)00034-0
  27. Winterwerp, J., and van Kesteren, W. (2004). Introduction to the physics of cohesive sediment in the marine environment. Elsevier B.V., Amsterdam, Netherlands.