DOI QR코드

DOI QR Code

Effect of Cooling Rate on Damping Capacity of Magnesium

마그네슘의 진동감쇠능에 미치는 냉각 속도의 영향

  • Jun, Joong-Hwan (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 융합공정소재그룹)
  • Received : 2017.09.28
  • Accepted : 2017.10.16
  • Published : 2017.11.30

Abstract

The effect of cooling rate on the damping capacity of pure Mg was studied. Two Mg samples with different cooling rates were prepared by heat treatment at 873 K for 24 h, followed by water quenching and by furnace cooling to room temperature, respectively. The average grain sizes of the Mg samples were almost identical regardless of the cooling rate, but more twins were observed in the sample with faster cooling rate. The calculated vacancy fraction was higher in the fast cooling sample than the slow cooling one. It is noted that the fast cooling sample exhibited lower damping capacity both in the strain-amplitude independent and strain-amplitude dependent regions. Higher values of vacancy concentration and number density of twins in the fast cooling sample are considered to be responsible for the deteriorated damping capacity in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Keywords

References

  1. B. L. Mordike and T. Ebert : Mater. Sci. Eng. A 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. A. A. Luo : Mater. Sci. Forum 419-422 (2003) 57.
  3. M. Bamberger and G. Dehm : Annual Rev. 38 (2008) 505.
  4. T. T. Sasaki, F. R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado and K. Hono : Acta Mater. 99 (2015) 176. https://doi.org/10.1016/j.actamat.2015.06.060
  5. W. J. Kim, H. G. Jeong and H. T. Jeong : Scr. Mater. 61 (2009) 1040. https://doi.org/10.1016/j.scriptamat.2009.08.020
  6. T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T. T. Sasaki, L. Ma, K. Hono and S. Kamado : Acta Mater. 130 (2017) 261. https://doi.org/10.1016/j.actamat.2017.03.046
  7. E. Aghion, B. Bronfin, F. Von Bush, S. Schumann and H. Friedrich : JOM 55 (2003) 30.
  8. N. D. Saddock, A. Suzuki, J. W. Jones and T. M. Pollock : Scr. Mater. 63 (2010) 692. https://doi.org/10.1016/j.scriptamat.2010.03.055
  9. G. Song and A. Atrens : Adv. Eng. Mater. 9 (2007) 177. https://doi.org/10.1002/adem.200600221
  10. M. Esmaily, J. E. Svensson, S. Fajardo, N. Birbilis, G. S. Frankel, S. Virtanen, R. Arrabal, S. Thomas and L. G. Johansson : Prog. Mater. Sci. 89 (2017) 92. https://doi.org/10.1016/j.pmatsci.2017.04.011
  11. J. Wang, R. Lu, D. Qin, X. Huang and F. Pan : Mater. Sci. Eng. A 560 (2013) 667. https://doi.org/10.1016/j.msea.2012.10.010
  12. J. H. Jun : J. Alloys Compd. 610 (2014) 169. https://doi.org/10.1016/j.jallcom.2014.04.214
  13. J. H. Jun : Mater. Sci. Eng. A 665 (2016) 86. https://doi.org/10.1016/j.msea.2016.04.024
  14. J. H. Jun and I.J. Hwang : Metall. Mater. Trans. A 47A (2016) 4784.
  15. J. Zhang, R. J. Perez and E. J. Lavernia : J. Mater. Sci. 28 (1993) 2395. https://doi.org/10.1007/BF01151671
  16. A. Granato and K. Lucke : J. Appl. Phys. 27 (1956) 583. https://doi.org/10.1063/1.1722436
  17. A. Granato and K. Lucke : J. Appl. Phys. 27 (1956) 789. https://doi.org/10.1063/1.1722485
  18. A. Granato and K. Lucke : J. Appl. Phys. 52 (1981) 7136. https://doi.org/10.1063/1.328687
  19. Z. Zhang, X. Zeng and W. Ding : Mater. Sci. Eng. A 392 (2005) 150. https://doi.org/10.1016/j.msea.2004.09.056
  20. J. H. Jun : Mater. Trans. 56 (2015) 1609. https://doi.org/10.2320/matertrans.M2015203
  21. Y. Wen, H. Xiao, H. Peng, N. Li and D. Raabe : Metall. Mater. Trans. A 46A (2015) 4828.
  22. P. Tzanetakis, J. Hillairet and G. Revel : Phys. Status Solidi B 75 (1976) 433. https://doi.org/10.1002/pssb.2220750205