DOI QR코드

DOI QR Code

Performance Improvement of AD-MUSIC Algorithm Using Newton Iteration

뉴턴 반복을 이용한 AD-MUSIC 알고리즘 성능향상

  • Paik, Ji Woong (Information and Communication Engineering, Sejong University) ;
  • Kim, Jong-Mann (Agency for Defense Development) ;
  • Lee, Joon-Ho (Information and Communication Engineering, Sejong University)
  • 백지웅 (세종대학교 정보통신공학과) ;
  • 김종만 (국방과학연구소) ;
  • 이준호 (세종대학교 정보통신공학과)
  • Received : 2017.08.30
  • Accepted : 2017.11.06
  • Published : 2017.11.30

Abstract

In AD-MUSIC algorithm, DOD/DOA can be estimated without computationally expensive two-dimensional search. In this paper, to further reduce the computational complexity, the Newton type method has been applied to one-dimensional search. In this paper, we summarize the formulation of the AD-MUSIC algorithm, and present how to apply Newton-type iteration to AD-MUSIC algorithm for improvement of the accuracy of the DOD/DOA estimates. Numerical results are presented to show that the proposed scheme is efficient in the viewpoints of computational burden and estimation accuracy.

기존에 제안된 AD-MUSIC 알고리즘을 이용하여 2차원 탐색 없이 1차원 탐색을 반복함으로써 DOD/DOA 추정이 가능하다. 본 논문에서는 계산량을 더욱 감소하기 위해 1차원 탐색에 Newton 기반 기법을 적용한다. 본 논문은 바이스태틱 MIMO 레이다 시스템의 수신신호 모델링과 AD-MUSIC의 유도과정을 보이고, 뉴턴 반복 기법을 AD-MUSIC에 적용한다. 추정 시, 기존의 AD-MUSIC 알고리즘의 성능과 계산량이 탐색 간격에 영향을 받는 것에 반해, AD-MUSIC의 성능과 뉴턴기법을 적용하는 본 논문의 방법인 경우, 탐색 간격에 관계없이 우수한 성능을 보이고, 계산량 또한 감소하는 효과를 보인다는 것을 시뮬레이션을 통해 보인다.

Keywords

References

  1. J. Li, P. Stoic, "MIMO radar-diversity means superiority", in Proceedings of the 14th Adaptive Sensor Array Processing Workshop (ASAP'06), Lincoln Lab, Mass, USA, Dec. 2006.
  2. E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A. Valenzuela, "Spatial diversity in radars models and detection performance", IEEE Transactions on Signal Processing, vol. 54, no. 3, pp. 823-838, 2006. https://doi.org/10.1109/TSP.2005.862813
  3. D. R. Fuhrmann, G. S. Antonio, "Transmit beamforming for MIMO radar systems using partial signal correlation", in Proceedings of Conference Record of the Thirty-Eighth Asilomar Conference on, Signals, Systems and Computers, pp. 295-299, Pacific Grove, CA, USA. 2004.
  4. I. Bekkerman, J. Tabrikian, "Target detection and localization using MIMO radars and sonars", IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3873-3883, Sep. 2006. https://doi.org/10.1109/TSP.2006.879267
  5. L. Xu, J. Li, and P. Stoica, "Adaptive techniques for mimo radar", in Proceedings of Fourth IEEE Workshop on, Sensor Array and Multichannel Processing(SAM 2006), pp. 258-262, Waltham, MA, USA, Jul. 2006.
  6. E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "MIMO radar: an idea whose time has come", in Proceedings of the IEEE 2004 Radar Conference, pp. 71-78, Philadelphia, USA, Apr. 2004.
  7. K.-I. Lee, W. Kang, H.-G. Yang, W. Chung, J. M. Kim, anf Y.-S. Chung, "DOD/DOA estimation for bistatic MIMO radar using 2-D matrix pencil method", JKIEES, vol. 25, no. 7, pp. 782-790, 2014.
  8. F. Liu, J. Wang, "AD-MUSIC for jointly DOA and DOD estimation in bistatic MIMO radar system", in Proceedings of 2010 International Conference on, Computer Design and Applications(ICCDA), vol. 4, pp. v4-455-v4-458, Qinhuangdao, China, Jun. 2010.
  9. J.-H. Lee, Y. S. Jeong, S.-W. Cho, W. Y. Yeo, and K. Pister, "Application of the Newton method to improve the accuracy of TOA estimation with the beam forming algorithm and the MUSIC algorithm", Progress in Electromagnetics Research, vol. 116, pp. 475-515, Jul. 2011. https://doi.org/10.2528/PIER10112608