Acknowledgement
Supported by : National Natural Science Foundation
References
- Babu, G.R., Rajan, S.S., Harikrishna, P., Lakshmanan, N. and Arunachalam, S. (2013), "Experimental determination of wind-Induced response on a model of natural draught cooling tower", Exp. Techniques, 37(1), 35-46. https://doi.org/10.1111/j.1747-1567.2011.00715.x
- Baillis, C., Jullien, J.F. and Limam, A. (2000), "An enriched 2D modelling of cooling towers.: Effects of real damage on the stability under self-weight and on the strength under wind pressure", Eng. Struct., 22(7), 831-846. https://doi.org/10.1016/S0141-0296(98)00138-2
- BS4485 (Part 4) (1996), "Code of practice for structural design and construction-water cooling tower", London: British Standard Institution.
- Busch, D., Harte, R., Kratzig, W.B. and Montag, U. (2002), "New natural draught cooling tower of 200 mheight", Eng. Struct., 24(12), 1509-21. https://doi.org/10.1016/S0141-0296(02)00082-2
- Cheng, X.X., Zhao, L., Ge, Y.J., Ke S.T. and Liu X.P. (2015), "Wind pressures on a large cooling tower", Adv. Struct. Eng., 18(2), 201-220. https://doi.org/10.1260/1369-4332.18.2.201
- DL/T 5339-2006 (2006), "Code for hydraulic design of fossil fuel power plants", The Ministry of Construction of China, Beijing: China , 115-116. (in Chinese)
- Du, L.Y. and Ke, S.T. (2017), "Research on effect of internal pressures for super large cylinder-conic section steel cooling towers", The Journal of Central South University, accepted but not published. (in Chinese)
- GB50009-2012 (2012), "Load code for the design of building structures", The Ministry of Construction of China, Beijing, China, 35-36. (in Chinese)
- Goodarzi, M. (2010), "A proposed stack configuration for dry cooling tower to improve cooling efficiency under cross wind", J. Wind Eng. Ind. Aerod., 98(12), 858-863. https://doi.org/10.1016/j.jweia.2010.08.004
- Izadi, M. and Bargi, K. (2014), "Natural draft steel hyperbolic cooling towers: Optimization and performance evaluation", Struct. Des. Tall Spec. Build., 23, 713-720. https://doi.org/10.1002/tal.1081
- Jeong, S.H. (2004), "Simulation of large wind pressures by gusts on a bluff structure", Wind Struct., 7(5), 333-344. https://doi.org/10.12989/was.2004.7.5.333
- Ke, S.T., Ge, Y.J. and Zhao, L. (2015), "Wind-induced vibration characteristics and parametric analysis of large hyperbolic cooling towers with different feature sizes", Struct. Eng. Mech., 4(5), 891-908.
- Ke, S.T., Ge, Y.J., Zhao, L. and Tamura Y. (2012), "A new methodology for analysis of equivalent static wind loads on super-large cooling towers", J. Wind Eng. Ind. Aerod., 111(3), 30-39. https://doi.org/10.1016/j.jweia.2012.08.001
- Ke, S.T., Ge, Y.J., Zhao, L. and Tamura, Y. (2013), "Wind-induced Responses Characteristics on Super-large Cooling Towers", J. Central South Univ. Technol., 20(11), 3216-3227. https://doi.org/10.1007/s11771-013-1846-7
- Ke, S.T., Liang, J., Zhao, L. and Ge, Y.J. (2015), "Influence of ventilation rate on the aerodynamic interference for two IDCTs by CFD", Wind Struct., 20(3), 449-468. https://doi.org/10.12989/was.2015.20.3.449
- Li, L.X., Kareem, A., Xiao, Y.Q. and Zhou, C. (2015), "A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds", J. Wind Eng. Ind. Aerod., 140, 49-66. https://doi.org/10.1016/j.jweia.2014.12.008
- Niemann, H.J. and Kopper, H.D. (1998), "Influence of adjacent buildings on wind effects on cooling towers", Eng. Struct., 20(10), 874-880. https://doi.org/10.1016/S0141-0296(97)00131-4
- Shimaoka, S., Nakazawa, S., Kato, S., Shibata, R. and Okada, H. (2005), "A study on optimal parameters for buckling restrained members of steel cooling tower: Application of grid computing system", Summaries of technical papers of Annual Meeting Architectural Institute of Japan. B-1, Structures I, Loads, reliability stress analyses foundation structures shell structures, space frames and membrane structures. Architectural Institute of Japan, 847-848.
- Stanislaw, H., Katarzyna, K. and Janina, F. (2016), "Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant", Sci. Total Environ., 554, 253-258.
- VGB-R610Ue (2005), "VGB-Guideline: structural design of cooling tower-technical guideline for the structural design, computation and execution of cooling towers", Essen: BTR Bautechnik Bei Kuhlturmen.
- Viladkar, M.N., Karisiddappa, Bhargava, P. and Godbole, P.N. (2006), "Static soil-structure interaction response of hyperbolic cooling towers to symmetrical wind loads", Eng. Struct., 28(9), 1236-1251. https://doi.org/10.1016/j.engstruct.2005.11.010
- Wang, H., Tao, T.Y. and Wu, T. (2016), "Wind power spectra for coastal area of East Jiangsu Province based on SHMS", Wind Struct., 22(2), 235-252. https://doi.org/10.12989/was.2016.22.2.235
- Wittek, U. and Grote, K. (2015), "Substitute wind concept for elastic stability of cooling tower shells", Mater. Member Behavior, 500-513.
- Zhang, J.F., Chen, H., Ge, Y.J., Zhao, L. and Ke, S.T. (2014), "Effects of stiffening rings on the dynamic properties of hyperboloidal cooling towers", Struct. Eng. Mech., 49(5), 619-629. https://doi.org/10.12989/sem.2014.49.5.619
- Zhao, L. and Ge, Y.J. (2010), "Wind Loading Characteristics of super-large cooling towers", Wind Struct., 13(4), 257-274. https://doi.org/10.12989/was.2010.13.3.257
Cited by
- New Approach for Vibration Suppression through Restrictors on Towering Steel Columns with Supporting Frame vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/8761750