DOI QR코드

DOI QR Code

Real-time Aircraft Upset Detection and Prevention Based On Extended Kalman Filter

확장칼만필터를 이용한 항공기 비정상 비행상황 판단 및 방지를 위한 실시간 대처법 연구

  • Woo, Beomki (Agency for Defence Development) ;
  • Park, On (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Seungkeun (Department of Aerospace Engineering, Chungnam National University) ;
  • Suk, Jinyoung (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Youdan (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2016.09.13
  • Accepted : 2017.08.29
  • Published : 2017.09.01

Abstract

Accidents caused by upset condition leads to fatal damage to both manned and unmanned aircraft. This paper deals with real-time detection of these aircraft upset situations to prevent further severe situations. Firstly, the difference between sensor measurement and predicted measurement from Extended Kalman filter is monitored to determine whether a target aircraft goes into an upset condition or not. In addition, repeating the time update stage of the Extended Kalman filter for a specific length of time can enable future upset situation prediction. The results of aforementioned both the approaches will build a bridge to upset prevention for future generation of manned/unmanned aircraft.

비정상 비행(Upset) 상황으로 인한 항공기 사고는 유인항공기와 무인항공기 모두에 치명적인 피해를 발생시킨다. 본 논문은 항공기의 비정상 비행상황에 대한 실시간 대처와 추가적인 위험상황을 방지하기 위한 기법을 연구한다. 먼저 확장칼만필터(Extended Kalman Filter) 방법을 이용해 얻게 되는 예측값과 센서를 통해 실제로 얻게 되는 측정값 사이의 차이를 모니터링하여 현재 항공기의 비정상 비행 진입 여부를 판단한다. 또한, 확장칼만필터의 시간 업데이트를 반복 연산하여 얻은 수 초 후의 예측값을 통해 항공기의 상태가 비정상 비행상황으로 진입할 것인지를 예측하여 사전에 판단할 수 있게 된다. 본 연구결과는 차세대 유무인 항공기의 비정상 비행 상태 진입 방지 시스템 구축을 위한 가교 역할을 할 것으로 사료된다.

Keywords

References

  1. International Air Transport Association, Loss of Control In-Flight Accident Analysis Report 2010-2014, Technical Report, International Air Transport Association, 2015.
  2. Aviation Safety Boeing Commercial Airplanes, Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations 1959-2014, Technical Report, Boeing Commercial Airplanes, July 2012.
  3. U.S. Air force Information Access Policy & Compliance Branch, "Accident report", http://www.foia.af.mil, 2016.08.22
  4. Well, Klaus H. "Aircraft control laws for envelope protection." AIAA Guidance, Navigation and Control Conference Keystone, Colorado. 2006
  5. Yavrucuk, Ilkay, Suraj Unnikrishnan, and J. V. R. Prasad. "Envelope protection for autonomous unmanned aerial vehicles." Journal of Guidance, Control, and Dynamics 32.1 (2009): 248-261. https://doi.org/10.2514/1.35265
  6. Upset Recovery Industry Team (The Boeing Company: D. Carbaugh, Airbus: L. Rockliff, and Flight Safety Foundation: B. Vandel), and Federal Aviation Administration (FAA), The Airplane Upset Recovery Training Aid, Revision 2, Aviation Safety Office, Washington, DC, 2008.
  7. Kwatny, Harry G., and Bor-Chin Chang. "Nonlinear Modeling and Analysis Software for Control Upset Prevention and Recovery of Aircraft." AIAA Guidance, Navigation and Control Conference, Hawaii, Aug. 2008.
  8. Engelbrecht, Jacobus AA, Simon J. Pauck, and Iain K. Peddle. "Bifurcation analysis and simulation of stall and spin recovery for large transport aircraft." AIAA Atmospheric Flight Mechanics Conference. 2012.
  9. N. B. Abramov, M. G. Goman, A. N. Khrabrov, E. N. Kolesnikov, L. Fucke, B. Soemarwoto, and H. Smaili, \Pushing Ahead - SUPRA Airplane Model for Upset Recovery," AIAA Modeling and Simulation Technologies Conference, Minneapolis, MN, Aug. 2012.
  10. Chen, Jie, and Ron J. Patton. Robust model-based fault diagnosis for dynamic systems. Vol. 3. Springer Science & Business Media, 2012.
  11. Keller, Jeffrey D., Robert M. McKillip Jr, and Sungwan Kim. "Aircraft flight envelope determination using upset detection and physical modeling methods." AIAA Paper 6259 (2009).
  12. Jonghee Bae, Youdan Kim. Fault Detection and Isolation Algorithm for SMART UAV using Decentralized Information Filter. KSAS Conference, 702-705, (2010).
  13. Jonghee Bae, Youdan Kim. Fault Detection and Isolation Technique for SMART UAV using Federated Kalman Filter. KSAS Conference, 692-695, (2010).
  14. Jooyoung Lee, Yongsoo Han, Youdan Kim. State Estimation for UAV using Multi-sensor Data Fusion Filter. KSAS Conference, 1052-1055, (2008).
  15. Ili, Kenneth W., and Kon-Sheng Charles Wang. (HARV) with thrust vectoring. Vol. 97. No. 206539. NASA, Dryden Flight Research Center, 1997.
  16. Ili, Kenneth W., and Kon-Sheng Charles Wang. "Flight-Determined, Subsonic, LateralDirectional Stability and Control Derivatives of the Thrust-Vectoring F-18 High Angle of Attack Research Vehicle (HARV), and comparisons to the basic f-18 and predicted derivatives." (1999).
  17. Taeyoung Lee and Youdan Kim. "Nonlinear adaptive flight control using backstepping and neural networks controller." Journal of Guidance, Control, and Dynamics 24.4 (2001): 675-682. https://doi.org/10.2514/2.4794
  18. Khalil, Hassan K. and J. W. Grizzle, Nonlinear Systems, 3rd ed. New Jersey, Prentice hall New Jersey, 2001.
  19. Little, Roderick JA, and Donald B. Rubin. Statistical analysis with missing data. John Wiley & Sons, 2014.
  20. Sungphil Kim, "Essential Kalman filter", Ajin, 2010
  21. Youdan Kim, "Fault Tolerant Flight Control System", The Proceedings of KIEE 50(12), 2001.12, 12-5.
  22. Stevens, Brian L., Frank L. Lewis, and Eric N. Johnson. Aircraft control and simulation: dynamics, controls design, and autonomous systems. John Wiley & Sons, 2015.
  23. J. E. Wilborn, and J. V. Foster, "Defining Commercial Transport Loss-of-Control: A Quantitative Approach," AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI, Aug. 2004.