References
- W. Ambrose, A theorem of Myers, Duke Math. J. 24 (1957), 345-348. https://doi.org/10.1215/S0012-7094-57-02440-7
- M. Anastasiei, Galloways compactness theorem on Finsler manifolds, Balkan J. Geom. Appl. 20 (2015), 1-8.
- L. Auslander, On curvature in Finsler geometry, Trans. Amer. Math. Soc. 79 (1955), 378-388. https://doi.org/10.1090/S0002-9947-1955-0071833-6
- D. Bao, S. S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, 2000.
- G. J. Galloway, Compactness criteria for Riemannian manifolds, Proc. Amer. Math. Soc. 84 (1982), 106-110. https://doi.org/10.1090/S0002-9939-1982-0633289-3
- C.-W. Kim, Finsler manifolds without conjugate points and with integral Ricci curvature, Israel J. Math. 189 (2012), 135-146. https://doi.org/10.1007/s11856-011-0129-y
- D. Kupeli, On existence and comparison of conjugate points in Riemannian and Lorentzian geometry, Math. Ann. 276 (1986), 67-79. https://doi.org/10.1007/BF01450925
- P. Mastrolia, M. Rimoldi, and G. Veronelli, Myers-type theorems and some related oscillation results, J. Geom. Anal. 22 (2012), 763-779. https://doi.org/10.1007/s12220-011-9213-0
- S. Pigola, M. Rigoli, and A. G. Setti, Vanishing and finiteness results in geometric analysis, Progress in Mathematics, 266, Birkhauser, 2008.