Acknowledgement
Supported by : Central Universities
References
- Aktas, G. and Ozerdem, M.S. (2016), "Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model", Struct. Eng. Mech., 60(4), 655-665. https://doi.org/10.12989/sem.2016.60.4.655
- Aleshin, Y. and Torgoev, I. (2013), Landslide Prediction Based on Neural Network Modelling, Springer-Verlag, Berlin, Germany.
- Angin, Z. (2016), "Geotechnical field investigation on giresun hazelnut licenced warehause and spot exchange", Geomech. Eng., 10(4), 547-563. https://doi.org/10.12989/gae.2016.10.4.547
- Bao, L.W., He, M. and Shen, P. (1995), "Argument on the shortcomings of BP-modal", Patt. Recogn. Artif. Intell., 8(1), 1-5.
- Bizjak, K.F. and Petkovsek, B. (2004), "Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec", Eng. Geol., 75(1), 89-106. https://doi.org/10.1016/j.enggeo.2004.05.003
- Box, G.E.P. and Jenkins, G.M. (1989), Time Series Analysis: Forecasting and Control, Holder-Day, San Francisco, California, U.S.A.
- Bozzano, F., Cipriani, I., Mazzanti, P. and Prestininzi, A. (2014), "A field experiment for calibrating landslide time-of-failure prediction functions", J. Rock Mech. Min. Sci., 67(2), 69-77.
- Chen, C. and Huang, S.J. (2013), "The necessary and sufficient condition for GM(1,1) grey prediction model", Appl. Math. Comput., 219(11), 6152-6162. https://doi.org/10.1016/j.amc.2012.12.015
- Chen, H.Q. and Zeng, Z.G. (2013), "Deformation prediction of landslide based on improved backpropagation neural network", Cogn. Comput., 5(1), 56-62. https://doi.org/10.1007/s12559-012-9148-1
- Chen, H.Q., Zeng, Z.G. and Tang, H.M. (2015), "Landslide deformation prediction based on recurrent neural network", Neur. Proc. Lett., 41(2), 169-178. https://doi.org/10.1007/s11063-013-9318-5
- Chen, J.J., Zeng, Z.Z., Jiang, P. and Tang, H.M. (2015), "Deformation prediction of landslide based on functional network", Neurocomput., 149, 151-157. https://doi.org/10.1016/j.neucom.2013.10.044
- Churing, Y. (1995), Backpropagation, Theory, Architecture and Applications, Lawrence Erbaum Publishers, New York, U.S.A.
- Feng, X.T. and An, H.G. (2004), "Hybrid intelligent method optimization of a soft rock replacement scheme for a large cavern excavated in alternate hard and soft rock strata", J. Rock Mech. Min. Sci., 41(4), 655-667. https://doi.org/10.1016/j.ijrmms.2004.01.005
- Gao, W. (2004), "Fast immunized evolutionary programming", Proceedings of the 3rd International Conference on Machine Learning and Cybernetics, Shanghai, China, August.
- Gao, W. and Yin, Z.X. (2011), Modern Intelligent Bionics Algorithm and Its Applications, Science Press, Beijing, China.
- Haeri, H. and Sarfarazi, V. (2016), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18(2), 201-214. https://doi.org/10.12989/cac.2016.18.2.201
- Honik, K. (1991), "Approximation capabilities of multilayer feedforward neural network", Neur. Netw., 4(2), 551-557.
- Huang, Z.Q., Jiang, T., Yue, Z.Q., Lee, C.F. and Wang, S.J. (2003), "Deformation of the central pier of the permanent shiplock, three gorges project, China: An analysis case study", J. Rock Mech. Min. Sci., 40(40), 877-892. https://doi.org/10.1016/S1365-1609(03)00061-3
- Jacek, Z.M. (1992), Introduction to Artificial Neural Systems, West Publishing Company, St. Paul, Minnesota, U.S.A.
- Kayacan, E., Ulutas, B. and Kaynak, O. (2010), "Grey system theory-based models in time series prediction", Expert Syst. Appl., 37(2), 1784-1789. https://doi.org/10.1016/j.eswa.2009.07.064
- Lai, J.X., Qiu, J.L., Feng, Z.H., Chen, J.X. and Fan, H.B. (2016), "Prediction of soil deformation in tunnelling using artificial neural networks", Comput. Intel. Neurosci., 33.
- Li, X.H., Zhao, Y., Jin, X.G., Lu, X.Y. and Wang, X.F. (2005), "Application of grey majorized model in tunnel surrounding rock displacement forecasting", Adv. Nat. Comput., 3611, 584-591.
- Lian, C., Zeng, Z.G., Yao, W. and Tang, H.M. (2014), "Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis", Neur. Comput. Appl., 24(1), 99-107. https://doi.org/10.1007/s00521-013-1446-3
- Liu, J.G., Zhou, D.D. and Liu, K.W. (2015), "A mathematical model to recover missing monitoring data of foundation pit", Geomech. Eng., 9(3), 275-286. https://doi.org/10.12989/gae.2015.9.3.275
- Liu, Z.B., Xu, W.Y., Meng, Y.D. amd Chen, H.J. (2009), "Modification of GM (1,1) and its application in analysis of rock-slope deformation", Proceedings of the 2009 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China, November.
- Liu, Z.B., Xu, W.Y. and Shao, J.F. (2012), "Gaussian process based approach for application on landslide displacement analysis and prediction", Comp. Model. Eng. Sci., 84(2), 99-122.
- Lu, P. and Rosenbaum, M.S. (2003), "Artificial neural networks and grey systems for the prediction of slope stability", Nat. Haz., 30(3), 383-398. https://doi.org/10.1023/B:NHAZ.0000007168.00673.27
- Luo, F.L. and Unbehauen, R. (1997), Applied Neural Networks for Signal Processing, Cambridge University Press, New York, U.S.A.
- Mazek, S.A. (2014), "Evaluation of surface displacement equation due to tunnelling in cohesionless soil", Geomech. Eng., 7(1), 55-73. https://doi.org/10.12989/gae.2014.7.1.055
- Qiao, D.L. and Zhao, M. (2011), "Deformation prediction based on time series analysis and grey system theory", Adv. Mater. Res., 368, 2147-2152.
- Wu, Q.D., Yan, B., Zhang, C., Wang, L., Ning, G.B. and Yu, B. (2014), "Displacement prediction of tunnel surrounding rock: A comparison of support vector machine and artificial neural network", Math. Probl. Eng., 2014, Article ID 351496(6).
- Wu, Y., Yang, S.Z. and Tao, J.H. (1988), "Analysis on grey system prediction and time series analysis prediction", J. Huazhong U. Sci. Technol., 16(3), 27-34.
- Zhang, W.G. and Goh, A.T.C. (2016), "Predictive models of ultimate and serviceability performances for underground twin caverns", Geomech. Eng., 10(2), 157-188.
- Zhu, C. and Hu, G. (2013), "Time series prediction of landslide displacement using SVM model: Application to Baishuihe landslide in three gorges reservoir area, China", App. Mech. Mater., 239, 1413-1420.
- Zhu, Z.D., Li, H.B., Shang, J.F., Wang, W. and Liu, J.H. (2010), "Research on the mining roadway displacement forecasting based on support vector machine theory", J. Coal Sci. Eng., 16(3), 235-239. https://doi.org/10.1007/s12404-010-0303-6
Cited by
- Landslide prediction based on a combination intelligent method using the GM and ENN: two cases of landslides in the Three Gorges Reservoir, China vol.17, pp.1, 2017, https://doi.org/10.1007/s10346-019-01273-w
- Tunnel Back Analysis Based on Differential Evolution Using Stress and Displacement vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/8156573
- Multiple data-driven approach for predicting landslide deformation vol.17, pp.3, 2017, https://doi.org/10.1007/s10346-019-01320-6
- Evaluation of geological conditions and clogging of tunneling using machine learning vol.25, pp.1, 2017, https://doi.org/10.12989/gae.2021.25.1.059
- Data-driven framework for predicting ground temperature during ground freezing of a silty deposit vol.26, pp.3, 2017, https://doi.org/10.12989/gae.2021.26.3.235