DOI QR코드

DOI QR Code

Behaviour of a plane joint under horizontal cyclic shear loading

  • Dang, Wengang (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University) ;
  • Fruhwirt, Thomas (Institute of Geotechnics, TU Bergakademie Freiberg) ;
  • Konietzky, Heinz (Institute of Geotechnics, TU Bergakademie Freiberg)
  • 투고 : 2016.05.09
  • 심사 : 2017.05.16
  • 발행 : 2017.11.25

초록

This paper describes lab test results of artificial rock-like material samples having a plane joint. Cyclic shear tests were performed under different normal loads and different shear displacement amplitudes. For this purpose, multi-stage normal loading tests (30 kN, 60 kN, 90 kN, 180 kN, 360 kN and 480 kN) with cyclic excitation at frequency of 1.0 Hz and different shear displacement amplitudes (0.5 mm, 1.0 mm, 2.0 mm, 4.0 mm, 5.0 mm, and 8.0 mm) were conducted using the big shear box device GS-1000. Experimental results show, that shear forces increase with the increase of normal forces and quasi-static friction coefficient is larger than dynamic one. With the increase of normal loads, approaching the peak value of shear forces needs larger shear displacements. During each cycle the normal displacements increase and decrease (rotational behavior in every cycle). Peak angle of inclination increases with the increase of normal load. A phase shift between maximum shear displacement and maximum shear force is observed. The corresponding time shift decreases with increasing normal load and increases with increasing shear displacement amplitudes.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Ahola, M.P., Hsiung, S.M. and Kana, D.D. (1996), "Experimental study on dynamic behavior of rock joints", Dev. Geotech. Eng., 79, 467-494.
  2. Babanouri, N., Nasab, S.K., Baghbanan, A. and Mohamadi, H.R. (2011), "Over-consolidation effect on shear behavior of rock joints", J. Rock Mech. Min. Sci., 48(8), 1283-1291. https://doi.org/10.1016/j.ijrmms.2011.09.010
  3. Bagde, M.N. and Petros, V. (2005), "Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading", Rock Mech. Rock Eng., 38(3), 169-196. https://doi.org/10.1007/s00603-005-0045-8
  4. Barton, N. and Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mech. Rock Eng., 10(1), 1-54.
  5. Belem, T., Souley, M. and Homand, F. (2007), "Modeling surface roughness degradation of rock joint wall during monotonic and cyclic shearing", ActaGeotech., 2(4), 227-248.
  6. Cabalar, A.F., Dulundu, K. and Tuncay, K. (2013), "Strength of various sands in triaxial and cyclic direct shear tests", Eng. Geol., 156, 92-102. https://doi.org/10.1016/j.enggeo.2013.01.011
  7. Crawford, A.M. and Curran, J.H. (1981), "The influence of shear velocity on the frictional resistance of rock discontinuities", J. Rock Mech. Min. Sci., 18(6), 505-515. https://doi.org/10.1016/0148-9062(81)90514-3
  8. Dang, W. (2017), "Shear behaviour of plane joints under CNL and DNL conditions: Lab testing and numerical simulation", Ph.D. Dissertation, Freiberg University of Mining and Technology, Freiberg, Germany.
  9. Dang, W., Konietzky, H. and Fruhwirt, T. (2016a), "Rotation and stress changes of a plane joint during direct shear tests", J. Rock Mech. Min. Sci., 89, 129-135.
  10. Dang, W., Konietzky, H. and Fruhwirt, T. (2016b), "Shear behaviour of a plane joint under dynamic normal load (DNL) conditions", Eng. Geol., 213, 133-141. https://doi.org/10.1016/j.enggeo.2016.08.016
  11. Dang, W., Konietzky, H., Herbst, M. and Fruhwirt, T. (2017),"Complex analysis of shear box tests with explicit consideration of interaction between test device and sample", Measure., 102, 1-9. https://doi.org/10.1016/j.radmeas.2017.05.013
  12. Ferrero, A.M., Migliazza, M. and Tebaldi, G. (2010),"Development of a new experimental apparatus for the study of the mechanical behaviour of a rock discontinuity under monotonic and cyclic loads", Rock Mech. Rock Eng., 43(6), 685-695. https://doi.org/10.1007/s00603-010-0111-8
  13. Guo, Y.T., Zhao, K.L., Sun, G.H., Yang, C.H., Ma, H.L. and Zhang, G.M. (2011), "Experimental study of fatigue deformation and damage characteristics of salt rock under cyclic loading", Rock Soil Mech., 32(5), 1353-1359.
  14. Hoek, E. and Bray, J.D. (1981), Rock Slope Engineering, Taylor & Francis, London, U.K.
  15. Hoek, E. and Brown, E.T. (1980), Underground Excavations in Rock, The Institution of Mining and Metallurgy, London, U.K.
  16. Jafari, M.K., Hosseini, K.A., Pellet, F., Boulon, M. and Buzzi, O. (2003), "Evaluation of shear strength of rock joints subjected to cyclic loading", Soil Dyn. Earthq. Eng., 23(7), 619-630. https://doi.org/10.1016/S0267-7261(03)00063-0
  17. Kana, D.D., Fox, D.J. and Hsiung, S.M. (1996), "Interlock/friction model for dynamic shear response in natural jointed rock", J. Rock Mech. Min. Sci., 33(4), 371-386. https://doi.org/10.1016/0148-9062(95)00073-9
  18. Konietzky, H., Fruhwirt, T. and Luge, H. (2012), "A new large dynamic rock mechanical direct shear box device", Rock Mech. Rock Eng., 45(3), 427-432. https://doi.org/10.1007/s00603-011-0214-x
  19. Lee, H.S., Park, Y.J., Cho, T.F. and You, K.H. (2001), "Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading", J. Rock Mech. Min. Sci., 38(7), 967-980. https://doi.org/10.1016/S1365-1609(01)00060-0
  20. Lee, Y.K., Park, J.W. and Song, J.J. (2014), "Model for the shear behavior of rock joints under CNL and CNS conditions", J. Rock Mech. Min. Sci., 70, 252-263.
  21. Li, X., Cao, W., Tao, M., Zhou, Z. and Chen, Z. (2016a), "Influence of unloading disturbance on adjacent tunnels", J. Rock Mech. Min. Sci., 84, 10-24.
  22. Li, X., Zhou, T. and Li, D. (2016b), "Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split-hopkinson pressure bar", Rock Mech. Rock Eng., 50(1), 29-44.
  23. Li, X., Tao, M., Wu, C., Du, K. and Wu, Q. (2017), "Spalling strength of rock under different static pre-confining pressures", J. Imp. Eng., 99, 69-74. https://doi.org/10.1016/j.ijimpeng.2016.10.001
  24. Liu, E.L., He, S.M., Xue, X.H. and Xu, J. (2011), "Dynamic properties of intact rock samples subjected to cyclic loading underconfining pressure conditions", Rock Mech. Rock Eng., 44(5), 629-634. https://doi.org/10.1007/s00603-011-0151-8
  25. Liu, E.L., Huang, R.Q. and He, S. (2012), "Effects of frequency on the dynamic properties of intact rock samples subjected to cyclic loading under confining pressure conditions", Rock Mech. Rock Eng., 45(1), 89-102. https://doi.org/10.1007/s00603-011-0185-y
  26. Liu, Z.X. and Dang, W.G. (2014), "Rock quality classification and stability evaluation of undersea deposit based on MIRMR", Tunn. Undergr. Sp. Tech., 40(2), 95-101. https://doi.org/10.1016/j.tust.2013.09.013
  27. Liu, Z.X., Dang, W.G., He, X.Q. and Li, D.Y. (2013), "Cancelling ore pillars in large-scale coastal gold deposit: A case study in Sanshandao gold mine, China", Trans. Nonferr. Met. Soc. Chin., 23(10), 3046-3056. https://doi.org/10.1016/S1003-6326(13)62832-0
  28. Liu, Z.X., Dang, W.G. and He, X.Q. (2012), "Undersea safety mining of the large gold deposit in Xinli District of Sanshandao gold mine", J. Miner. Metall. Mater., 19(7), 574-583. https://doi.org/10.1007/s12613-012-0598-y
  29. Mirzaghorbanali, A., Nemcik, J. and Aziz, N. (2014), "Effects of shear rate on cyclic loading shear behaviour of rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 47(5),1931-1938. https://doi.org/10.1007/s00603-013-0453-0
  30. Muralha, J., Grasselli, G. and Tatone, B. (2014), "ISRM suggested method for laboratory determination of the shear strength of rock joints: Revised version", Rock Mech. Rock Eng., 47(1), 291-302. https://doi.org/10.1007/s00603-013-0519-z
  31. Nguyen, V.H. (2013), "Static and dynamic behaviour of joints in schistose rock: Lab testing and numerical simulation", Ph.D. Dissertation, Freiberg University of Mining and Technology, Freiberg, Germany.
  32. Nguyen, V.H., Konietzky, H. and Fruhwirt, T. (2014), "New methodology to characterize shear behavior of joints by combination of direct shear box testing and numerical simulations", Geotech. Geol. Eng., 32(4), 829-46. https://doi.org/10.1007/s10706-014-9761-8
  33. Petros, V. and Bagde, M.N. (2005), "Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading", J. Rock Mech. Min. Sci., 42(2), 237-250. https://doi.org/10.1016/j.ijrmms.2004.08.008
  34. Tao, M., Li, X. and Wu. C. (2012), "Characteristics of the unloading process of rocks under high initial stress", Comput. Geotech., 45, 83-92. https://doi.org/10.1016/j.compgeo.2012.05.002
  35. Tao, M., Li, X. and Li, D. (2013a), "Rock failure induced by dynamic unloading under 3D stress state", Theor. Appl. Fract. Mech., 65(3), 47-54. https://doi.org/10.1016/j.tafmec.2013.05.007
  36. Tao, M., Li, X. and Wu, C. (2013b), "3D numerical model for dynamic loading-induced multiple fracture zones around underground cavity faces", Comput. Geotech., 54(10), 33-45. https://doi.org/10.1016/j.compgeo.2013.06.002
  37. Tao, M. and Li, X. (2015), "The influence of initial stress on wave propagation and dynamic elastic coefficients", Geomech. Eng., 8(3), 377-390. https://doi.org/10.12989/gae.2015.8.3.377
  38. Thevenet, D., Creachcadec, R., Sohier, L. and Cognard, J.Y. (2013), "Experimental analysis of the behavior of adhesively bonded joints under tensile/compression-shear cyclic loadings", J. Adhes. Adhes., 44, 15-25. https://doi.org/10.1016/j.ijadhadh.2013.01.011
  39. Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. https://doi.org/10.12989/gae.2015.9.6.815
  40. Zhou, Z.L., Cai, X., Chen, L., Cao, W.Z., Zhao, Y. and Cheng, X. (2017), "Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone", Eng. Geol., 220, 1-12. https://doi.org/10.1016/j.enggeo.2017.01.017
  41. Zhou, Z.L., Wu, Z.B., Li, X.B. and Xiang, L.I. (2015), "Mechanical behavior of sandstone under cyclic point loading", Trans. Nonferrous Met. Soc. Chin., 25(8), 2708-2717. https://doi.org/10.1016/S1003-6326(15)63895-X