Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Anastasopoulos, I., Gazetas, G., Bransby, M.F., Davies, M.C.R. and El Nahas, A. (2007), "Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments", J. Geotech. Geoenviron. Eng., 133(8), 943-958. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(943)
- Ardakani, A., Bayat, M. and Javanmard, M. (2014), "Numerical modeling of soil nail walls considering mohr coulomb, hardening soil and hardening soil with small-strain stiffness effect models", Geomech. Eng., 6(4), 391-401. https://doi.org/10.12989/gae.2014.6.4.391
- Bildik, S. and Laman, M. (2015), "Experimental investigation of the effects of pipe location on the bearing capacity", Geomech. Eng., 8(2), 221-235. https://doi.org/10.12989/gae.2015.8.2.221
- Bolton, M.D. and Powrie, W. (1987), "The collapse of diaphragm walls retaining clay", Geotechnique, 37(3), 335-353. https://doi.org/10.1680/geot.1987.37.3.335
- Bolton, M.D. and Powrie, W. (1988), "Behaviour of diaphragm walls in clay prior to collapse", Geotechnique, 38(2), 167-189. https://doi.org/10.1680/geot.1988.38.2.167
- Carder, D.R. and Bennett, S.N. (1996), The Effectiveness of Berms and Raked Props as Temporary Support to Retaining Walls, TRL Rep. 213.
- Cheng, X., Zheng, G., Soga, K., Bandara, S.S., Kumar, K., Diao, Y. and Xu, J. (2015), "Post-failure behavior of tunnel heading collapse by MPM simulation", Sci. China Technol. Sci., 58(12), 2139-2152. https://doi.org/10.1007/s11431-015-5874-4
- Clough, G.W. and Davidson, R.R. (1977), "Effects of construction on geotechnical performance", Proceedings of the 9th International Conference Soil Mechanics and Foundation Engineering, Specialty Session III, Tokyo, July.
- Daly, M.P. and Powrie, W. (2001), "Undrained analysis of earth berms as temporary supports for embedded retaining walls", Proc. Inst. Civ. Eng. Geotech. Eng., 149(4), 237-248. https://doi.org/10.1680/geng.2001.149.4.237
- Desai, C.S. and Ma, Y. (1992), "Modelling of joints and interfaces using the disturbed-state concept", J. Numer. Anal. Meth. Geomech., 16(9), 623-653. https://doi.org/10.1002/nag.1610160903
- Do, N.A., Dias, D. and Oreste, P. (2013a), "3D modelling for mechanized tunnelling in soft ground-influence of the constitutive model", Am. J. Appl. Sci., 10(8), 863-875. https://doi.org/10.3844/ajassp.2013.863.875
- Do, N.A., Dias, D., Oreste, P.P. and Djeran-Maigre, I. (2013b), "2D numerical investigations of twin tunnel interaction", Geomech. Eng., 6(3), 263-275. https://doi.org/10.12989/gae.2014.6.3.263
- Fan, C. and Fang, Y. (2010), "Numerical solution of active earth pressures on rigid retaining walls built near rock faces", Comput. Geotech., 37(7), 1023-1029. https://doi.org/10.1016/j.compgeo.2010.08.004
- Frydman, S. and Keissar, I. (1987), "Earth pressure on retaining walls near rock faces", J. Geotech. Eng., 113(6), 586-599. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:6(586)
- Georgiadis, M. and Anagnostopoulos, C. (1998), "Effect of berms on sheet-pile wall behaviour", Geotechnique, 48(4), 569-574. https://doi.org/10.1680/geot.1998.48.4.569
- Gourvenec, S.M. and Powrie, W. (2000), "Three-dimensional finite element analyses of embedded retaining walls supported by discontinuous earth berms", Can. Geotech. J., 37(5), 1062-1077. https://doi.org/10.1139/t00-033
- Greco, V. (2013), "Active thrust on retaining walls of narrow backfill width", Comput. Geotech., 50, 66-78. https://doi.org/10.1016/j.compgeo.2012.12.007
- Hong, Y. and Ng, C.W.W. (2013), "Base stability of multi-propped excavations in soft clay subjected to hydraulic uplift", Can. Geotech. J., 50(2), 153-164. https://doi.org/10.1139/cgj-2012-0170
- Itasca Consulting Group (2009), "FLAC fast Lagrangian analysis of continua, version 5.0, User's manual.
- Jewell, R.A. (1989), "Direct shear tests on sand", Geotechnique, 39(2), 309-322. https://doi.org/10.1680/geot.1989.39.2.309
- Kim, C., Kwon, J., Im, J.C. and Hwang, S. (2012), "A method for analyzing the self-supported earthretaining structure using stabilizing piles", Mar. Georesour. Geotec., 30(4), 313-332. https://doi.org/10.1080/1064119X.2011.626669
- Lee, C., Wei, Y., Chen, H., Chang, Y., Lin, Y. and Huang, W. (2011), "Stability analysis of cantilever double soldier-piled walls in sandy soil", J. Chin. Inst. Eng., 34(4), 449-465. https://doi.org/10.1080/02533839.2011.576488
- Liao, H.J. and Lin, C.C. (2009), "Case studies on bermed excavation in Taipei silty soil", Can. Geotech. J., 46(8), 889-902. https://doi.org/10.1139/T09-034
- Ouria, A., Toufigh, V., Desai, C. and Toufigh, V. (2016), "Finite element analysis of a CFRP reinforced retaining wall", Geomech. Eng., 10(6), 757-774. https://doi.org/10.12989/gae.2016.10.6.757
- Park, J., Joo, Y. and Kim, N. (2009), "New earth retention system with prestressed wales in an urban excavation", J. Geotech. Geoenviron. Eng., 135(11), 1596-1604. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000148
- Peck, R.B. (1969), "Deep excavations and tunneling in soft ground", Proceedings of the 7th International Conference on SMFE, Mexico City.
- Pietruszczak, S. and Mroz, Z. (1981), "Finite element analysis of deformation of strain-softening materials", J. Numer. Meth. Eng., 17(3), 327-334. https://doi.org/10.1002/nme.1620170303
- Potts, D.M., Addenbrooke, T.I. and Day, R.A. (1993), The Use of Soil Berms for Temporary Support of Retaining Walls, Thomas Telford, London, U.K.
- Powrie, W. and Daly, M.P. (2002), "Centrifuge model tests on embedded retaining walls supported by earth berms", Geotechnique, 52(2), 89-106. https://doi.org/10.1680/geot.2002.52.2.89
- Qu, H., Li, R., Hu, H., Jia, H. and Zhang, J. (2016), "An approach of seismic design for sheet pile retaining wall based on capacity spectrum method", Geomech. Eng., 11(2), 303-323.
- Seo, M., Im, J., Kim, C. and Yoo, J. (2016), "Study on the applicability of a retaining wall using batter piles in clay", Can. Geotech. J., 53(8), 1195-1212. https://doi.org/10.1139/cgj-2014-0264
- Take, W.A. and Valsangkar, A.J. (2001), "Earth pressures on unyielding retaining walls of narrow backfill width", Can. Geotech. J., 38(6), 1220-1230. https://doi.org/10.1139/t01-063
- Tatsuoka, F., Sakamoto, M., Kawamura, T. and Fukushima, S. (1986), "Strength and deformation characteristics of sand in plane strain compression at extremely low pressures", Soils Found., 26(1), 65-84. https://doi.org/10.3208/sandf1972.26.65
- Toufigh, V., Desai, C.S., Saadatmanesh, H., Toufigh, V., Ahmari, S. and Kabiri, E. (2014), "Constitutive modeling and testing of interface between backfill soil and fiber-reinforced polymer", J. Geomech., 14(3), 04014009. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000298
- Toufigh, V., Masoud Shirkhorshidi, S. and Hosseinali, M. (2016), "Experimental investigation and constitutive modeling of polymer concrete and sand interface", J. Geomech., 17(1), 04016043.
- Vardoulakis, I. and Graf, B. (1985), "Calibration of constitutive models for granular materials using data from biaxial experiments", Geotechnique, 35(3), 299-317. https://doi.org/10.1680/geot.1985.35.3.299
- Yang, K.H. and Liu, C.N. (2007), "Finite element analysis of earth pressures for narrow retaining walls", J. GeoEng., 2(2), 43-52.
- Yang, M., Chen, S. and Chen, S. (2006), "Innovative central opening strut system for foundation excavation", J. Constr. Eng. M., 132(1), 58-66. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:1(58)
- Zhao, Q. and Zhu, J.M. (2014), "Research on active earth pressure behind retaining wall adjacent to existing basements exterior wall considering soil arching effects", Rock Soil Mech., 35(3), 723-728.
Cited by
- Mobilizable Strength Design for Multibench Retained Excavation vol.2018, pp.1563-5147, 2018, https://doi.org/10.1155/2018/8402601
- Performances and Working Mechanisms of Inclined Retaining Structures for Deep Excavations vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/1740418