References
- Blok, J.J., 1983. The Resistance Increase of a Ship in Waves (Ph.D. thesis). Delft University of Technology.
- Carrica, P.M.,Wilson, R.V.,Noak,R.W., Stern, F., 2007. Ship motions using singlephase level set with dynamic overset grids. Comput. Fluids 36 (9), 1415-1433. https://doi.org/10.1016/j.compfluid.2007.01.007
- Castiglione, T., Stern, F., Bova, S., Kandasamy, M., 2009. Numerical investigation of the seakeeping behavior of a catamaran advancing in regular head waves. Ocean. Eng. 38 (16), 1806-1822. https://doi.org/10.1016/j.oceaneng.2011.09.003
- Faltinsen, O.M., Minsaas, K.J., Liapis, N., Skjordal, S.O., 1980. Prediction of resistance and propulsion of a ship in a seaway. In: Proc. of the 13th Symposium on Naval Hydrodynamics, Tokyo, Japan, pp. 505-529.
- Fang, M.C., Chen, G.R., 2006. On the nonlinear hydrodynamic forces for a ship advancing in waves. Ocean. Eng. 33, 2119-2134. https://doi.org/10.1016/j.oceaneng.2005.11.006
- Fujii, H., Takahashi, T., 1975. Experimental study on the resistance increase of a ship in regular oblique waves. In: Proc. 14th ITTC, vol. 4, pp. 351-360.
- Gerritsma, J., Beukelman, W., 1972. Analysis of the resistance increase in waves of a fast cargo ship. Int. Shipbuild. Prog. 19, 217.
- Hirota, K., Matsumoto, K., Takagishi, K., Orihara, H., Yoshida, H., 2004. Verification of Ax-bow effect based on full scale measurement. In: J. Kansai Soc. Nav. Archit. Jpn., pp. 33-40. No, 241.
- Hwang, S., Ahn, H., Lee, Y.Y., Kim, M.S., Van, S.H., Kim, K.S., Kim, J., Jang, Y.H., 2016. Experimental study on the bow hull-form modification for added resistance reduction in waves of KVLCC2. In: Proc. of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece, pp. 864-868.
- Hwang, S.H., Kim, J., Lee, Y.Y., Ahn, H.S., Van, S.H., 2011. Measurement of added resistance for the KVLCC2. In: Korea Towing Tank Conference Fall Meeting.
- Hwang, S.H., Kim, J., Lee, Y.Y., Ahn, H.S., Van, S.H., Kim, K.S., 2013. Experimental study on the effect of bow hull forms to added resistance in regular head waves. In: Proc. PRADS2013, Korea, 49-44.
- Joncquez, S.A.G., Bingham, H., Anderson, P., 2008. Validation of added resistance computations by a potential flow boundary element method. In: Proc. of the 27th Symposium on Naval Hydrodynamics, Seoul, Korea.
- Kashiwagi, M., 1995. Prediction of surge and its effect on added resistance by means of the enhanced unified theory. Trans. West-Jpn. Soc. Nav. Archit. 89, 77-89.
- Kashiwagi, M., 2009. Impact of hull design on added resistance in waves - application of the enhanced unified theory. In: Proc. of the 10th International Marine Design Conference, Trodheim, Norway, pp. 521-535.
- Kim, J., Kim, K.S., Park, I.R., Van, S.H., 2010. Numerical simulations for high speed ships in deep and shallow water with sinkage and trim. In: Proc. of the 11th International Symposium on Practical Design of Ships and Other Floating Structures, Rio de Janeiro, Brazil, vol. 1, pp. 16-24.
- Kim, J., Park, I.R., Kim, K.S., Van, S.H., 2005. RANS simulation for KRISO container ship and VLCC tanker. J. Soc. Nav. Archit. Korea 42, 593-600. https://doi.org/10.3744/SNAK.2005.42.6.593
- Kim, J., Park, I.R., Kim, K.S., Van, S.H., Kim, Y.C., 2011. Development of numerical method for the evaluation of ship resistance and self-propulsion performances. J. Soc. Nav. Archit. Korea 48, 147-157. https://doi.org/10.3744/SNAK.2011.48.2.147
- Kim, K.H., Kim, Y., 2011. Numerical study on added resistance of ships by using a time-domain Rankine panel method. Ocean. Eng. 28, 1357-1367.
- Kim, W.J., Van, S.H., Kim, D.H., 2001. Measurement of flow around modern commercial ship models. Exp. Fluids 31, 567-578. https://doi.org/10.1007/s003480100332
- Kuroda, M., Tsujimoto, M., Fujiwara, T., 2008. Investigation on components of added resistance in short waves. J. Jpn. Soc. Nav. Archit. Ocean Eng. 8, 171-176.
- Kuroda, M., Tsujimoto, M., Sasaki, N., 2012. Development of STEP for the reduction of added resistance in waves. In: Proc. of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece.
- Larsson, L., Stern, F., Visonneau, M., 2010. In: Proc. of Gothenburg 2010: a Workshop on Numerical Ship Hydrodynamics, Gothenberg, Sweden.
- Liu, S., Papanikolaou, A., Zaraphonitis, G., 2011. Prediction of added resistance of ships in waves. Ocean. Eng. 38 (4), 641-650. https://doi.org/10.1016/j.oceaneng.2010.12.007
- Loukakis, T.A., Sclavounos, P.D., 1978. Some extensions of the classical approach to strip theory of ship motions, including the calculation of mean added forces and moments. J. Ship Res. 22 (1), 1-19.
- Maruo, H., 1960. The drift of a body floating on waves. J. Ship Res. 4, 1-10.
- Mizutani, K., Ibata, S., Aoyama, Y., Ikeda, Y., van He, N., 2015. A role of Spray on the added resistance acting on a blunt-bow ship in head waves. In: Proc. of the 25th International Offshore and Polar Engineering Conference, Kona, Hawaii, USA.
- Newman, J.N., 1977. Marine hydrodynamics. MIT Press, Cambridge.
- Orihara, H., Miyata, H., 2003. Evaluation of added resistance in regular incident waves by computational fluid dynamics motion simulation using overlapping grid system. Mar. Sci. Technol. 8, 47-60. https://doi.org/10.1007/s00773-003-0163-5
- Park, D., Lee, J., Kim, Y., 2015. Uncertainty analysis for added resistance experiment of KVLCC2 ship. Ocean. Eng. 95, 143-156. https://doi.org/10.1016/j.oceaneng.2014.12.007
- Sadat-Hosseini, H., Wu, P.C., Carrica, P.M., Kim, H., Toda, Y., Stern, F., 2013. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean. Eng. 59, 240-273. https://doi.org/10.1016/j.oceaneng.2012.12.016
- Salvesen, N., 1978. Added resistance of ships in waves. J. Hydronaut. 12 (No.1), 24-34. https://doi.org/10.2514/3.63110
- SEA-JAPAN, 2016. Universal Applies New Energy-saving Type Leadge Bow to 81,000DWT Bulker, Sea-Japan, p. 318.
- Seo, M.G., Park, D.M., Yang, K.K., Kim, Y., 2013. Comparative study on computation of ship added resistance in waves. Ocean. Eng. 73, 1-15. https://doi.org/10.1016/j.oceaneng.2013.07.008
- Seo, M.G., Yang, K.K., Park, D.M., Kim, Y., 2014. Numerical analysis of added resistance on ships in short waves. Ocean. Eng. 87, 97-110. https://doi.org/10.1016/j.oceaneng.2014.05.011
-
Shih, T.H., Liou, W.W., Shabir, A., Zhu, J., 1995. A new k-
${\varepsilon}$ eddy viscosity model for high Reynolds number turbulent flows model development and validation. Comput. Fluids 24 (No.3), 227-238. - Simonsen, C.D., Otzen, J.F., Joncquez, S., Stern, F., 2013. EFD and CFD for KCS heaving and pitching in regular head waves. J. Mar. Sci. Technol. 18, 435-459. https://doi.org/10.1007/s00773-013-0219-0
- Stern, F., Wilson, R., Shao, J., 2005. Quantitative V&V of CFD simulations and certification of CFD codes. Int. J. Numer. Meth. Fluids 50, 1335-1355.
- Sussman, M.F., Fatemi, E., Smerera, P., Osher, S., 1995. An improved level-set method for incompressible two-phase flows. Comput. Fluids 27 (5), 663-680. https://doi.org/10.1016/S0045-7930(97)00053-4
- Tezdogan, T., Demirel, Y.K., Kellett, P., Khorasanchi, M., Incecik, A., Turan, O., 2015. Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming. Ocean. Eng. 97, 186-206. https://doi.org/10.1016/j.oceaneng.2015.01.011
- Valanto, P., Hong, Y., 2015. Experimental investigation on ship wave added resistance in regular head, oblique, beam, and following waves. In: Proceedings if the 25th International Ocean and Polar Engineering Conference, Kona, Hawaii, USA, pp. 19-26.
- van Leer, B., 1979. Towards the ultimate conservative difference scheme, V: a second order sequel to godunovs method. J. Comput. Phys. 32, 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
- Zeraatga, H., Abed, H.F., 2006. Added resistance and drift force analysis in regular and irregular waves. J. Mar. Eng. 2 (1).
- Zhang, S., Weems, K.M., Lin, W.M., 2009. Investigation of the horizontal drifting effects on ships with forward speed. In: Proc. of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA.
Cited by
- Grid Type Impact on the Results of the Volume of Fluid Method in the Free Surface Flow Calculations Around Ship Hull vol.1, pp.1, 2017, https://doi.org/10.2478/ntpe-2018-0019
- 동적 중첩격자 기법을 이용한 KVLCC2의 파랑중 부가저항 및 2자유도 운동 해석 vol.55, pp.5, 2018, https://doi.org/10.3744/snak.2018.55.5.385
- A non-linear finite element method on unstructured meshes for added resistance in waves vol.14, pp.2, 2017, https://doi.org/10.1080/17445302.2018.1483624
- 선박의 유동해석 문제에 대한 중첩격자기법(Suggar++)의 활용 vol.56, pp.1, 2017, https://doi.org/10.3744/snak.2019.56.1.047
- Effect of bow hull forms on the resistance performance in calm water and waves for 66k DWT bulk carrier vol.11, pp.2, 2019, https://doi.org/10.1016/j.ijnaoe.2019.02.007
- Effects of diffraction in regular head waves on added resistance and wake using CFD vol.11, pp.2, 2019, https://doi.org/10.1016/j.ijnaoe.2019.02.013
- Application of the Design of Experiments and Computational Fluid Dynamics to Bow Design Improvement vol.7, pp.7, 2017, https://doi.org/10.3390/jmse7070226
- A numerical investigation on the nominal wake of KVLCC2 model ship in regular head waves vol.12, pp.None, 2020, https://doi.org/10.1016/j.ijnaoe.2020.01.001
- Unsteady RANS CFD Simulations of Sailboat’s Hull and Comparison with Full-Scale Test vol.8, pp.6, 2017, https://doi.org/10.3390/jmse8060394
- 선체 주위 파에 대한 고정도 모사가 선체 저항에 미치는 영향 vol.57, pp.5, 2017, https://doi.org/10.3744/snak.2020.57.5.278
- Improvement of prediction methods of power increase in regular head waves using calm-water and resistance tests in waves vol.13, pp.None, 2017, https://doi.org/10.1016/j.ijnaoe.2021.03.005
- Simulation strategy of the full-scale ship resistance and propulsion performance vol.15, pp.1, 2017, https://doi.org/10.1080/19942060.2021.1974091
- Neural Network Approach for Predicting Ship Speed and Fuel Consumption vol.9, pp.2, 2017, https://doi.org/10.3390/jmse9020119
- A study on the added resistance of a catamaran advancing in waves considering variations of both operating and geometric parameters vol.16, pp.4, 2021, https://doi.org/10.1080/17445302.2020.1727180
- Hydrodynamic Characteristics of a Helicopter Ditching on Different Positions of Wavy Water vol.58, pp.5, 2017, https://doi.org/10.2514/1.c036186
- Comparative study on analysis methods for added resistance of four ships in head and oblique waves vol.236, pp.None, 2021, https://doi.org/10.1016/j.oceaneng.2021.109552