참고문헌
- Attar, M., Karrech, A. and egenauer-LieK, R. (2015), "Dynamic response of cracked Timoshenko beams on elastic foundations under moving harmonic loads", J. Vib. Control, 20: 1077546315580470.
- Bayat, M.R., Rahmani, O. and Mosavi Mashhadi, M. (2016), "Nonlinear Low-Velocity Impact Analysis of Functionally Graded Nanotube-Reinforced Composite Cylindrical Shells in Thermal Environments", Polymer Compos., In press.
- Bespalova, E.I., (2007), "Reaction of an anisotropic cylindrical shell to a moving load", Int. J. Appl. Mech., 43: 425-31. https://doi.org/10.1007/s10778-007-0039-1
- Castro Jorge, P., Simoes, F.M.F. and Pinto da Costa, A. (2015), "Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads", Comput. Struct., 148: 24-34.
- Gbadeyan, J.A. and Dada, M.S. (2011), "A comparison of dynamic responses of three versions of moving load problem involving elastic rectangular plates", J. Vib. Control, 17: 903-915 https://doi.org/10.1177/1077546310377910
- Chen, J.S. and Tsai, S.M. (2016), "Sandwich structures with periodic assemblies on elastic foundation under moving loads", J. Vib. Control, 22: 2519-2529. https://doi.org/10.1177/1077546314548470
- Chonan, S. (1981), "Moving load on a two-layered cylindrical shell with imperfect bonding", The J. Acoust. Soc. Americ., 69: 1015-20. https://doi.org/10.1121/1.385681
- Ding, L., Zhu, H.P. and Wu, L. (2016), "Effects of axial load and structural damping on wave propagation in periodic Timoshenko beams on elastic foundations under moving loads", Phys. Lett. A, 380: 2335-2341. https://doi.org/10.1016/j.physleta.2016.05.023
- Eftekhari, S.A. and Jafari, A.A. (2012), "Vibration of an initially stressed rectangular plate due to an accelerated traveling mass", Scient. Iran. A, 19: 1195-1213. https://doi.org/10.1016/j.scient.2012.07.008
- Eftekhari, S.A. (2016), "Differential quadrature procedure for in-plane vibration analysis of variable thickness circular arches traversed by a moving point load", Appl. Math. Model, 40: 4640-4663. https://doi.org/10.1016/j.apm.2015.11.046
- Ghafoori, E. and Asghari, M. (2010), "Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory", Compos. Struct., 92: 1865-76. https://doi.org/10.1016/j.compstruct.2010.01.011
- He, W.Y. and Zhu, S. (2016), "Moving load-induced response of damaged beam and its application in damage localization", J. Vib. Control, 22: 3601-3617. https://doi.org/10.1177/1077546314564587
- Huang, C.C. (1976), "Moving loads on elastic cylindrical shells", J. Sound Vib., 49: 215-20 https://doi.org/10.1016/0022-460X(76)90497-1
- Huang, C.S., Tseng, Y.P. and Hung, C.L. (2000), "An accurate solution for the responses of circular curved beams subjected to a moving load", Int. J. Numeric. Meth. Eng., 48: 1723-1740. https://doi.org/10.1002/1097-0207(20000830)48:12<1723::AID-NME965>3.0.CO;2-J
- Kaur, T., Singh, A.K., Chattopadhyay, A. and Sharma, S.K. (2016), "Dynamic response of normal moving load on an irregular fiber-reinforced half-space", J. Vib. Control, 22: 77-88. https://doi.org/10.1177/1077546314528525
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150: 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct, 157: 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
- Law, S.S., Bu, J.Q., Zhu, X.Q. and Chan, S.L. (2007), "Moving load identification on a simply supported orthotropic plate", Int. J. Mech. Sci., 49: 1262-1275. https://doi.org/10.1016/j.ijmecsci.2007.03.005
- Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Meth. Appl. Mech. Eng., 268: 1-17. https://doi.org/10.1016/j.cma.2013.09.001
- Malekzadeh, P. and Heydarpour, Y. (2012), "Response of functionally graded cylindrical shells under moving thermo-mechanical loads", Thin-Wall. Struct, 58: 51-66. https://doi.org/10.1016/j.tws.2012.04.010
- Malekzadeh, P. and Monajjemzadeh, S.M. (2013), "Dynamic response of functionally graded plates in thermal environment under moving load", Compos.: Part B, 45: 1521-33. https://doi.org/10.1016/j.compositesb.2012.09.022
- Malekzadeh, P. and Daraie, M. (2014), "Dynamic analysis of functionally graded truncated conical shells subjected to asymmetric moving loads", Thin-Wall. Struct., 84: 1-13. https://doi.org/10.1016/j.tws.2014.05.007
- Panneton, R., Berry, A. and Laville, F. (1995), "Vibration and sound radiation of a cylindricalshell under a circumferentially moving load",. The J. Acoust. Soc. Americ., 98: 2165-73. https://doi.org/10.1121/1.413331
- Raminnea, M., Biglari, H. and Vakili Tahami, F. (2016), "Nonlinear higher order Reddy theory for temperaturedependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture", Struct. Eng. Mech., 59: 153-186. https://doi.org/10.12989/sem.2016.59.1.153
- Reddy, J.N. (1984), "A Simple Higher Order Theory for Laminated Composite Plates", J. Appl. Mech., 51: 745-752. https://doi.org/10.1115/1.3167719
- Ruzzene, M. and Baz, A, (2006), "Dynamic stability of periodic shells with moving loads", J. Sound Vib., 296: 830-44. https://doi.org/10.1016/j.jsv.2006.03.008
- Sadeghi, M.H. and Karimi-Dona, M.H. (2011), "Dynamic behavior of afluid conveying pipe subjected to a moving sprung masse An FEM-state space approach", Int. J. Press. Vess. Pip., 88: 123e131. https://doi.org/10.1016/j.ijpvp.2011.02.004
- Sheng, C.X. (1985), "Forced vibrations of elastic shallow shell due to the moving mass", Appl. Math. Mech., 6: 231-8.
- Sheng, G.G. and Wang, X. (2009), "Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads", J. Sound Vib., 323: 772-789. https://doi.org/10.1016/j.jsv.2009.01.017
- Sheng, G.G. and Wang, X. (2010), "Response and control of functionally graded laminated piezoelectric shells under thermal shock and moving loadings", Compos. Struct., 93: 132-41. https://doi.org/10.1016/j.compstruct.2010.06.007
- Shu, C., Chew, Y.T. and Richards, E. (1995), "Generalized differential and integral quadrature and their application to solve boundary layer equations" Int. J. Numeric. Meth. Fluids, 21: 723-733. https://doi.org/10.1002/fld.1650210903
- Simsek, M. and Kocaturk, T., (2009), "Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load", J. Sound Vib., 320: 235-253. https://doi.org/10.1016/j.jsv.2008.07.012
- Sing, V.P., Dwivedi, J.P. and Upahyay, P.C. (1999), "Non-axisymmetric dynamic response of buried orthotropic cylindrical shells under moving load", Struct. Eng. Mech., 8: 39-51. https://doi.org/10.12989/sem.1999.8.1.039
- Sofiyev, A.H. (2010), "Dynamic response of an FGM cylindrical shell under moving loads", Compos. Struct, 93: 58-66. https://doi.org/10.1016/j.compstruct.2010.06.015
- Song, Q., Shi, J., Liu, Z. and Wan, Y. (2016), "Dynamic analysis of rectangular thin plates of arbitrary boundary conditions under moving loads", Int. J. Mech. Sci., 117: 16-29. https://doi.org/10.1016/j.ijmecsci.2016.08.005
- Sudheesh Kumar, C.P., Sujath, C. and Shankar, K. (2015), "Vibration of simply supported beams under a single moving load: A detailed study of cancellation phenomenon", Int. J. Mech. Sci., 99: 40-47. https://doi.org/10.1016/j.ijmecsci.2015.05.001
- Wang, D., Zhang, W. and Zhu, J. (2016), "A moving bounds strategy for the parameterization of geometric design variables in the simultaneous shape optimization of curved shell structures and openings", Finite Elem. Anal. Des., 120: 80-9. https://doi.org/10.1016/j.finel.2016.07.002
- Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronaut., 127: 17-181.
- Wu, J.S., Lee, M.L. and Lai, T.S. (1987), "The dynamic analysis of a flat plate under a moving load by the finite element method", Int. J. Numeric. Meth. Eng., 24: 743-762. https://doi.org/10.1002/nme.1620240407
- Wu, J.S. and Chen, C.C. (1989), "The dynamic analysis of a suspended cable due to a moving load", Int. J. Numeric. Meth. Eng., 28: 2361-2381. https://doi.org/10.1002/nme.1620281011
- Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of a cracked FGM beam under an axial force and a moving load, J. Sound Vib., 312: 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
- Yu, D., Wen, J., Shen, H. and Wen, X. (2012), "Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads", Phys. Lett. A, 376: 3417-3422. https://doi.org/10.1016/j.physleta.2012.09.041
- Zhu, X.Q. and Law, S.S. (2003), "Dynamic behavior of orthotropic rectangular plates under moving loads", J. Eng. Mech., 129: 79-87. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:1(79)
피인용 문헌
- Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.103