References
- Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736. https://doi.org/10.12989/sem.2013.48.5.711
- Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme", Comput. Struct., 85(7), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004
- Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31), 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001
- Bathe, K.J. and Noh, G. (2012), "Insight into an implicit time integration scheme for structural dynamics", Comput. Struct., 98, 1-6.
- Bathe, K. (1996), Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ.
- Bathe, K.J. and Wilson, E.L. (1973), "Stability and accuracy analysis of direct time integration methods", Earthq. Eng. Struct. Dyn., 1, 283-291.
- Bayat, M. and Pakar, I. (2017), "Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems", Struct. Eng. Mech., 61(5), 657-661. https://doi.org/10.12989/sem.2017.61.5.657
- Belytschko, T. and Lu, Y. (1993), "Explicit multi-time step integration for first and second order finite element semidiscretizations", Comput. Meth. Appl. Mech. Eng., 3-4(108), 353-383.
- Belytschko, T., Liu, W.K. and Moran, B. (2000), Nonlinear Finite Elements for Continua and Structures, 3rd Edition, Wiley, Chichester, U.K.
- Chang, S.Y. (2002), "Integrated equations of motion for direct integration methods", Struct. Eng. Mech., 13(5), 569-589. https://doi.org/10.12989/sem.2002.13.5.569
- Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech., 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748)
- Chang, S.Y. (2010), "A new family of explicit methods for linear structural dynamics", Comput. Struct., 88(11), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
- Chang, S.Y., Wu, T.H. and Tran, N.C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815
- Chen, S., Hansen, J.M. and Tortorelli, D.A. (2000), "Unconditionally energy stable implicit time integration: application to multibody system analysis and design", Int. J. Numer. Meth. Eng., 48(6), 791-822. https://doi.org/10.1002/(SICI)1097-0207(20000630)48:6<791::AID-NME859>3.0.CO;2-Z
- Chen, W.F. and Han, D.J. (2007), Plasticity for Structural Engineers, J. Ross Publishing.
- Chopra, A. (2007), Dynamics of Structures: Theory and Applications to Earthquake Engineering, 3rd Ed. Edition, Prentice-Hall, Upper Saddle River, NJ.
- Clough, R.W. and Penzien, J. (1983), Dynamics of Structures, McGraw Hill, New York.
- Crisfield, M. (1979), "A faster modified Newton-Raphson iteration", Comput. Meth. Appl. Mech. Eng., 20(3), 267-278. https://doi.org/10.1016/0045-7825(79)90002-1
- Dokainish, M. and Subbaraj, K. (1989), "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods", Comput. Struct., 32(6), 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3
- Felippa, C.A. and Park, K.C. (1979), "Direct time integration methods in nonlinear structural dynamics", Comput. Meth. Appl. Mech. Eng., 17-18(2), 277-313. https://doi.org/10.1016/0045-7825(79)90023-9
- Gao, Q., Wu, F., Zhang, H., Zhong, W., Howson, W. and Williams, F. (2012), "A fast precise integration method for structural dynamics problems", Struct. Eng. Mech., 43(1), 1-13. https://doi.org/10.12989/sem.2012.43.1.001
- Gholampour, A.A. and Ghassemieh, M. (2013), "Nonlinear structural dynamics analysis using weighted residual integration", Mech. Adv. Mater. Struct., 20, 199-216. https://doi.org/10.1080/15376494.2011.584146
- Gholampour, A.A., Ghassemieh, M. and Razavi, H. (2011), "A time stepping method in analysis of nonlinear structural dynamics", Appl. Comput. Mech., 5, 143-150.
- Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elastodynamics", Comput. Meth. Appl. Mech. Eng., 2, 69-97.
- Hejranfar, K. and Parseh, K. (2016), "Numerical simulation of structural dynamics using a high-order compact finite-difference scheme", Appl. Math. Model., 40(3), 2431-2453. https://doi.org/10.1016/j.apm.2015.09.067
- Hilber, H.M. (1977), Analysis and Design of Numerical Integration Methods in Structural Dynamics, Earthquake Engineering Research Center, University of California, Berkeley.
- Houbolt, J.C. (1950), "A recurrence matric solution for the dynamic response of aircraft in gusts", NACA TN, 2060.
- Howe, R. (1991), "A new family of real-time redictor-corrector integration algorithms", Simul., 57(3), 177-186. https://doi.org/10.1177/003754979105700308
- Hughes, T. (1987), The Finite Element Methods, Eaglewood Cliffs, New Jersy, NJ.
- Hughes, T. and Belytschko, T. (1983), "A precis of developments in computational methods for transient analysis", J. Appl. Mech., 50(4b), 1033-1041. https://doi.org/10.1115/1.3167186
- Humar, J.L. (1990), Dynamics of Structures, Prentice-Hall, Englewood Cliffs, NJ.
- Keierleber, C. and Rosson, B. (2005), "Higher-order implicit dynamic time integration method", J. Struct. Eng., 131(8), 1267-1276. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1267)
- Kim, J. and Kim, D. (2015), "A quadratic temporal finite element method for linear elastic structural dynamics", Math. Comput. Simul., 117, 68-88. https://doi.org/10.1016/j.matcom.2015.05.009
- Krieg, R. (1973), "Unconditional stability in numerical time integration methods", J. Appl. Mech., 40(2), 417-421. https://doi.org/10.1115/1.3422999
- Leontiev, V. (2007), "Extension of LMS formulations for L stable optimal integration methods with U0-V0 overshoot properties in structural dynamics: the level symmetric (LS) integration methods", Int. J. Numer. Meth. Eng., 71(13), 1598-1632. https://doi.org/10.1002/nme.2008
- Leontyev, V. (2010), "Direct time integration algorithm with controllable numerical dissipation for structural dynamics: two-step Lambda method", Appl. Numer. Math., 60(3), 277-292. https://doi.org/10.1016/j.apnum.2009.12.005
- Lindsay, P., Parks, M. and Prakash, A. (2016), "Enabling fast, stable and accurate peridynamic computations using multi-time-step integration", Comput. Meth. Appl. Mech. Eng., 306, 382-405. https://doi.org/10.1016/j.cma.2016.03.049
- Liu, Q., Ma, X., Bai, Z. and Zhuansun, X. (2013), "A Split-Step-Scheme-Based Precise Integration Time Domain Method for Solving Wave Equation", COMPEL: Int. J. Comput. Math. Elec. Electron. Eng., 33(1/2), 9-9.
- Lourderaj, U., Song, K., Windus, T. L., Zhuang, Y. and Hase, W.L. (2007), "Direct dynamics simulations using Hessian-based predictor-corrector integration algorithms", J. Chem. Phys., 126(4), 044105. https://doi.org/10.1063/1.2437214
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94.
- Park, K.C. (1977), "Practical aspects of numerical time integration", Comput. Struct., 7(3), 343-353. https://doi.org/10.1016/0045-7949(77)90072-4
- Paz, M. and Leigh, W. (2003), Structural Dynamics: Theory and Computation, Springer, Netherlands.
- Pezeshk, S. and Camp, C. (1995), "An explicit time-integration method for damped structural systems", Struct. Eng. Mech., 3(2), 145-162. https://doi.org/10.12989/sem.1995.3.2.145
- Pezeshk, S. and Camp, C.V. (1995), "An explicit time integration technique for dynamic analysis", Int. J. Numer. Meth. Eng., 38(13), 2265-2281. https://doi.org/10.1002/nme.1620381308
- Razavi, S., Abolmaali, A. and Ghassemieh, M. (2007), "A weighted residual parabolic acceleration time integration method for problems in structural dynamics", Comput. Meth. Appl. Math. Comput. Meth. Appl. Math., 7(3), 227-238.
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Nonlinear dynamic analysis by dynamic relaxation method", Struct. Eng. Mech., 28(5), 549-570. https://doi.org/10.12989/sem.2008.28.5.549
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Numerical time integration for dynamic analysis using a new higher order predictor-corrector method", Eng. Comput., 25(6), 541-568. https://doi.org/10.1108/02644400810891544
- Sha, D., Zhou, X. and Tamma, K. (2003), "Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics", Comput. Meth. Appl. Mech. Eng., 192(3), 291-329. https://doi.org/10.1016/S0045-7825(02)00516-9
- Shing, P.S.B. and Mahin, S.A. (1985), "Computational aspects of a seismic performance test method using online computer control", Earthq. Eng. Struct. Dyn., 13(4), 507-526. https://doi.org/10.1002/eqe.4290130406
- Soares, D. (2016), "An implicit family of time marching procedures with adaptive dissipation control", Appl. Math. Model., 40(4), 3325-3341. https://doi.org/10.1016/j.apm.2015.10.027
- Subbaraj, K. and Dokainish, M. (1989), "A survey of direct timeintegration methods in computational structural dynamics-II. Implicit methods", Comput. Struct., 32(6), 1387-1401. https://doi.org/10.1016/0045-7949(89)90315-5
- Tamma, K.K. and Namburu, R.R. (1988), "A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics", Comput. Meth. Appl. Mech. Eng., 71(2), 137-150. https://doi.org/10.1016/0045-7825(88)90082-5
- Wilson, E.L. (1962), Dynamic Response by Step-By-Step Matrix Analysis, Labortorio Nacional de Engenharia Civil, Lisbon, Portugal, Lisbon, Portugal.
- Wilson, E.L., Farhoomand, I. and Bathe, K.J. (1972), "Nonlinear dynamic analysis of complex structures", Int. J. Earthq. Eng. Struct. Dyn., 3(1), 241-252.
- Wood, W., Bossak, M. and Zienkiewicz, O. (1980), "An alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15(10), 1562-1566. https://doi.org/10.1002/nme.1620151011
- Zhai, W.M. (1996), "Two simple fast integration methods for large scale dynamic problems in engineering", International Int. J. Numer. Meth. Eng., 39(24), 4199-4214. https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
- Zhong, W. and Zhu, J. (1996), "On a new fourth order self-adaptive time integration algorithm", Struct. Eng. Mech., 4(6), 589-600. https://doi.org/10.12989/sem.1996.4.6.589
- Zhou, X. and Tamma, K. (2004), "A new unified theory underlying time dependent linear first order systems: a prelude to algorithms by design", Int. J. Numer. Meth. Eng., 60(10), 1699-1740. https://doi.org/10.1002/nme.1019