Acknowledgement
Supported by : UACEG
References
- Anlas, G., Santare, M.H. and Lambros, J. (2000), "Numerical calculation of stress intensity factors in functionally graded materials", Int. J. Fract., 104(1), 131-143. https://doi.org/10.1023/A:1007652711735
- Bohidar, S.K., Sharma, R. and Mishra, P.R. (2014), "Functionally graded materials: A critical review", Int. J. Res., 1(7), 289-301.
- Carpinteri, A. and Pugno, N. (2006), "Cracks in re-entrant corners in functionally graded materials", Eng. Fract. Mech., 73(6), 1279-1291. https://doi.org/10.1016/j.engfracmech.2006.01.008
- Chakrabarty, J. (2006), Theory of Plasticity, Elsevier Butterworth-Heinemann, Oxford.
- Dolgov, N.A. (2005), "Determination of stresses in a two-layer coating", Streng. Mater., 37, 422-431. https://doi.org/10.1007/s11223-005-0053-7
- Dolgov, N.A. (2016), "Analytical methods to determine the stress state in the substrate-coating system under mechanical loads", Streng. Mater., 48, 658-667. https://doi.org/10.1007/s11223-016-9809-5
- Erdogan, F. (1995), "Fracture mechanics of functionally graded materials", Compos. Eng., 5(7), 753-770. https://doi.org/10.1016/0961-9526(95)00029-M
- Gasik, M.M. (2010), "Functionally graded materials: bulk processing techniques", Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257
- Gu. P. and Asaro, R.J. (1997), "Cracks in functionally graded materials", Int. J. Solid. Struct., 34(1), 1-17. https://doi.org/10.1016/0020-7683(95)00289-8
- Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japan", Mater Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509
- Hutchinson, W. and Suo, Z. (1992), "Mixed mode cracking in layered materials", Adv. Appl. Mech., 64(1), 804-810.
- Koizumi, M. (1993), "The concept of FGM ceramic trans", Function. Grad. Mater., 34(1), 3-10.
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Semi-analytical analysis for multi-dimensional functionally graded plates: 3-D elasticity solutions", Int. J. Numer. Meth. Eng., 79(3), 25-44. https://doi.org/10.1002/nme.2555
- Lubliner, J. (2006), Plasticity Theory, Revised Edition, University of California, Berkeley, CA.
- Markworth, A.J., Ramesh, K.S. and Parks, Jr. W.P. (1995), "Review: modeling studies applied to functionally graded materials", J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560
- Mortensen, A. and Suresh, S. (1995), "Functionally graded metals and metal-ceramic composites: Part 1 Processing", Int. Mater. Rev., 40(6), 239-265. https://doi.org/10.1179/imr.1995.40.6.239
- Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded material", Mater. Sci. Appl., 2(5), 1708-1718.
- Neubrand, A. and Rodel, J. (1997), "Gradient materials: An overview of a novel concept", Zeitschrift fur Metallkunde, 88(4), 358-371.
- Niino, M., Hirai, T. and Wanatabe, R. (1987), "The functionally gradient materials", J. Jpn. Soc. Compos. Mater., 13(1), 257. https://doi.org/10.6089/jscm.13.257
- Parvanova, S.L., Dineva, P.S. and Manolis, G.D. (2013), "Dynamic behavior of a finite-sized elastic solid with multiple cavities and inclusions using BIEM", Acta Mech., 224, 597-618. https://doi.org/10.1007/s00707-012-0759-0
- Parvanova, S.L., Dineva, P.S., Manolis, G.D. and Kochev, P.N. (2014), "Dynamic response of a solid with multiple inclusions under anti-plane strain conditions by the BEM", Comput. Struct., 139, 65-83. https://doi.org/10.1016/j.compstruc.2014.04.002
- Paulino, G.C. (2002), "Fracture in functionally graded materials", Eng. Fract. Mech., 69(5), 1519-1530. https://doi.org/10.1016/S0013-7944(02)00045-0
- Petrov, V.V. (2014), Non-linear Incremental Structural Mechanics, M., Infra-Injeneria.
- Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, IOM Communications Ltd., London.
- Szekrenyes, A. (2012), "J-integral for delaminated beam and plate models", Periodica Polytechnica, Mech. Eng., 56(1), 63-71. https://doi.org/10.3311/pp.me.2012-1.10
- Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "Crack propagation in graded composites", Compos. Sci. Technol., 65(2), 201-220. https://doi.org/10.1016/j.compscitech.2004.07.004
- Upadhyay, A.K. and Simha, K.R.Y. (2007), "Equivalent homogeneous variable depth beams for cracked FGM beams; compliance approach", Int. J. Fract., 144(2), 209-213. https://doi.org/10.1007/s10704-007-9089-y
- Zhang, H., Li, X.F., Tang, G.J. and Shen, Z.B. (2013), "Stress intensity factors of double cantilever nanobeams via gradient elasticity theory", Eng. Fract. Mech., 105(1), 58-64. https://doi.org/10.1016/j.engfracmech.2013.03.005
Cited by
- Evaluation of stress intensity factors in functionally graded materials by natural element method vol.33, pp.1, 2017, https://doi.org/10.1007/s12206-018-1229-y