참고문헌
- Baskar, K., Shanmugam, N.E. and Thevendran, V. (2002), "Finite-element analysis of steel-concrete composite plate girder", J. Struct. Eng., 128(9), 1158-1168. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1158)
- Bigdeli, Y. and Kim, D. (2017), "Development of energy based Neuro-Wavelet algorithm to suppress structural vibration", Struct. Eng. Mech., 62(2), 237-246. https://doi.org/10.12989/sem.2017.62.2.237
- Bigdeli, Y., Kim, D.K. and Chang, S. (2014), "Vibration control of 3D irregular buildings by using developed neuro-controller strategy", Struct. Eng. Mech., 49(6), 687-703. https://doi.org/10.12989/sem.2014.49.6.687
- Chandak, R., Upadhyay, A. and Bhargava, P. (2008), "Shear lag prediction in symmetrical laminated composite box beams using artificial neural network", Struct. Eng. Mech., 29(1), 77-89. https://doi.org/10.12989/sem.2008.29.1.077
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007), "Hybrid procedure for cracking and time-dependent effects in composite frames at service load", J. Struct. Eng., 133(2), 166-175. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(166)
- Costa-Neves, L.F., da Silva, J.G.S., de Lima, L.R.O. and Jordao, S. (2014), "Multi-storey, multi-bay buildings with composite steel-deck floors under human-induced loads: The human comfort issue", Comput. Struct., 136, 34-46. https://doi.org/10.1016/j.compstruc.2014.01.027
- Dai, J.G., Ueda, T., Sato, Y. and Nagai, K. (2012), "Modeling of tension stiffening behavior in FRP-strengthened RC members based on rigid body spring networks", Comput. Aid. Civil Infrastruct. Eng., 27(6), 406-418. https://doi.org/10.1111/j.1467-8667.2011.00741.x
- Gedam, B.A., Bhandari, N.M. and Upadhyay, A. (2014), "An apt material model for drying shrinkage and specific creep of HPC using artificial neural network", Struct. Eng. Mech., 52(1), 97-113. https://doi.org/10.12989/sem.2014.52.1.097
- Gupta, R.K., Kumar, S., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2015), "Rapid prediction of deflections in multi-span continuous composite bridges using neural networks", Int. J. Steel Struct., 15(4), 893-909. https://doi.org/10.1007/s13296-015-1211-9
- He, J., Liu, Y., Chen, A. and Yoda, T. (2010), "Experimental study on inelastic mechanical behaviour of composite girders under hogging moment", J. Constr. Steel Res., 66(1), 37-52. https://doi.org/10.1016/j.jcsr.2009.07.005
- Joshi, S.G., Londhe, S.N. and Kwatra, N. (2014), "Application of artificial neural networks for dynamic analysis of building frames", Comput. Concrete, 13(6), 765-780. https://doi.org/10.12989/cac.2014.13.6.765
- Kaloop, M.R. and Kim, D.K. (2014), "GPS-structural health monitoring of a long span bridge using neural network adaptive filter", Surv. Rev., 16(334), 7-14.
- Kaloop, M.R., Sayed, M.A., Kim, D.K. and Kim, E. (2014), "Movement identification model of port container crane based on structural health monitoring system", Struct. Eng. Mech., 50(1), 105-119. https://doi.org/10.12989/sem.2014.50.1.105
- Khan, M.I. (2012), "Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks", Automat. Constr., 22, 516-524. https://doi.org/10.1016/j.autcon.2011.11.011
- Kim, D.H. and Kim, D. K. (2009), "Application of lattice probabilistic neural network for active response control of offshore structures", Struct. Eng. Mech., 31(2), 153-162. https://doi.org/10.12989/sem.2009.31.2.153
- Kim, D.K., Kim, D.H., Cui, J., Seo, H.Y. and Lee, Y.H. (2009), "Iterative neural network strategy for static model identification of an FRP deck", Steel Compos. Struct., 9(5), 445-455. https://doi.org/10.12989/scs.2009.9.5.445
- Mallela, U.K. and Upadhyay, A. (2016), "Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks", Thin Wall Struct., 102, 158-164. https://doi.org/10.1016/j.tws.2016.01.025
- Maru, S. and Nagpal, A.K. (2004), "Neural network for creep and shrinkage deflections in reinforced concrete frames", J. Comput. Civil Eng., 18(4), 350-359. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:4(350)
- MATLAB (2009), Neural Networks Toolbox User's Guide, The Mathworks Inc., USA.
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M.Z., Jameel, M. and Arumugam, A.M.S. (2013a), "Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams", Comput. Concrete, 11(3), 237-252. https://doi.org/10.12989/cac.2013.11.3.237
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M.Z., Jameel, M., Hakim, S.J.S. and Zargar, M. (2013b), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struct. Eng. Mech., 45(3), 319-332.
- Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013c), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853
- Panigrahi, R., Gupta, A. and Bhalla, S. (2008), "Design of tensegrity structures using artificial neural networks", Struct. Eng. Mech., 29(2), 223-235. https://doi.org/10.12989/sem.2008.29.2.223
- Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2016), "A tension stiffening model for analysis of reinforced concrete flexural members subjected to service load", Comput. Concrete, 17(1), 29-51. https://doi.org/10.12989/cac.2016.17.1.029
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2010), "Neural networks for inelastic mid-span deflections in continuous composite beams", Struct. Eng. Mech., 36(2), 165-179. https://doi.org/10.12989/sem.2010.36.2.165
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2011), "Prediction of moments in composite frames considering cracking and time effects using neural network models", Struct. Eng. Mech., 39(2), 267-285. https://doi.org/10.12989/sem.2011.39.2.267
- Pendharkar, U., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2015), "Rapid prediction of long-term deflections in composite frames", Steel Compos. Struct., 18(3), 547-563. https://doi.org/10.12989/scs.2015.18.3.547
- Ramnavas, M.P. (2016), "Development of computational techniques for service load analysis of steel-concrete composite structures", Ph.D. Thesis, Indian Institute of Technology Delhi, New Delhi.
- Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2017), "Service load analysis of composite frames using cracked span length frame element", Eng. Struct., 132, 733-744. https://doi.org/10.1016/j.engstruct.2016.11.071
- Sahamitmongkol, R. and Kishi, T. (2011), "Tension stiffening effect and bonding characteristics of chemically prestressed concrete under tension", Mater. Struct., 44(2), 455-474. https://doi.org/10.1617/s11527-010-9641-5
- Tadesse, Z., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2012), "Neural networks for prediction of deflection in composite bridges", J. Constr. Steel Res., 68(1), 138-149. https://doi.org/10.1016/j.jcsr.2011.08.003
- Varshney, L.K., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2013), "Control of time-dependent effects in steel-concrete composite frames", Int. J. Steel Struct., 13(4), 589-606. https://doi.org/10.1007/s13296-013-4002-1
- Zona, A., Barbato, M. and Conte, J.P. (2008), "Nonlinear seismic response analysis of steel-concrete composite frames", J. Struct. Eng., 134(6), 986-997. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(986)