DOI QR코드

DOI QR Code

Rayleigh wave for detecting debonding in FRP-retrofitted concrete structures using piezoelectric transducers

  • Mohseni, H. (School of Civil, Environmental and Mining Engineering, The University of Adelaide) ;
  • Ng, C.T. (School of Civil, Environmental and Mining Engineering, The University of Adelaide)
  • 투고 : 2017.07.25
  • 심사 : 2017.08.19
  • 발행 : 2017.11.25

초록

Applications of fibre-reinforced polymer (FRP) composites for retrofitting, strengthening and repairing concrete structures have been expanded dramatically in the last decade. FRPs have high specific strength and stiffness compared to conventional construction materials, e.g., steel. Ease of preparation and installation, resistance to corrosion, versatile fabrication and adjustable mechanical properties are other advantages of the FRPs. However, there are major concerns about long-term performance, serviceability and durability of FRP applications in concrete structures. Therefore, structural health monitoring (SHM) and damage detection in FRP-retrofitted concrete structures need to be implemented. This paper presents a study on investigating the application of Rayleigh wave for detecting debonding defect in FRP-retrofitted concrete structures. A time-of-flight (ToF) method is proposed to determine the location of a debonding between the FRP and concrete using Rayleigh wave. A series of numerical case studies are carried out to demonstrate the capability of the proposed debonding detection method. In the numerical case studies, a three-dimensional (3D) finite element (FE) model is developed to simulate the Rayleigh wave propagation and scattering at the debonding in the FRP-retrofitted concrete structure. Absorbing layers are employed in the 3D FE model to reduce computational cost in simulating the practical size of the FRP-retrofitted structure. Different debonding sizes and locations are considered in the case studies. The results show that the proposed ToF method is able to accurately determine the location of the debonding in the FRP-retrofitted concrete structure.

키워드

과제정보

연구 과제 주관 기관 : Australian Research Council (ARC)

참고문헌

  1. ACI 440R (2007), Report on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures, ACI Committee 440, American Concrete Institute, Farmington Hills, Michigan, U.S.A.
  2. Aggelis, D.G. and Shiotani, T. (2007), "Repair evaluation of concrete cracks using surface and through-transmission wave measurements", Cement Concrete Compos., 29, 700-711. https://doi.org/10.1016/j.cemconcomp.2007.05.001
  3. Aggelis, D.G., Shiotani, T. and Polyzos, D. (2009), "Characterization of surface crack depth and repair evaluation using rayleigh waves", Cement Concrete Compos., 31, 77-83. https://doi.org/10.1016/j.cemconcomp.2008.09.008
  4. Akuthota, B., Hughes, D., Zoughi, R., Myers, J. and Nanni, A. (2004), "Near-field microwave detection of disbond in carbon fiber reinforced polymer composites used for strengthening cement-based structures and disbond repair verification", J. Mater. Civil Eng., 16, 540-546. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(540)
  5. Alampalli, S. and Ettouney, M.M. (2014), Structural Health Monitoring, the International Handbook of FRP Composites in Civil Engineering, CRC Press, Boca Raton, Florida, U.S.A.
  6. Aryan, P., Kotousov, A., Ng, C.T. and Cazzolato, B. (2017a), "A model-based method for damage detection with guided waves", Struct. Contr. Health Monitor., 24(3), e1884. https://doi.org/10.1002/stc.1884
  7. Aryan, P., Kotousov, A., Ng, C.T. and Cazzolato, B.S. (2017b), "A Baseline-free and non-contact method for detection and imaging of structural damage using 3D laser vibrometery", Struct. Contr. Health Monitor., 24(4), e1894. https://doi.org/10.1002/stc.1894
  8. Aryan, P., Kotousov, A., Ng, C.T. and Wildy, S. (2016), "Reconstruction of baseline time-trace under changing environmental and operational conditions", Smart Mater. Struct., 25(3), 035018. https://doi.org/10.1088/0964-1726/25/3/035018
  9. Balaguru, P., Nanni, A. and Giancaspro, J. (2009), FRP Composites for Reinforced and Prestressed Concrete Structures: A Guide to Fundamentals and Design for Repair and Retrofit, Taylor and Francis, New York, U.S.A.
  10. Bank, L.C. (2006), Composite for Construction: Structural Design with FRP Materials, John Wiley and Sons, Hoboken, New Jersey, U.S.A.
  11. Biolzi, L., Ghittoni, C., Fedele, R. and Rosati, G. (2013), "Experimental and theoretical issues in FRP-concrete bonding", Constr. Build. Mater., 41, 182-190. https://doi.org/10.1016/j.conbuildmat.2012.11.082
  12. Brown, J.R. and Hamilton, H.R. (2013), "Quantitative infrared thermography inspection for FRP applied to concrete using single pixel analysis", Constr. Build. Mater., 38, 1292-1302. https://doi.org/10.1016/j.conbuildmat.2009.12.016
  13. Carboni, M., Gianneo, A. and Giglio, M. (2015), "A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites", Ultrason., 60, 51-64. https://doi.org/10.1016/j.ultras.2015.02.011
  14. Chakraborty, A. (2009), Modeling of Lamb Waves in Composite Structures, Encyclopedia of Structural Health Monitoring, John Wiley and Sons.
  15. Chamis, C.C. (1984), Mechanics of Composite Materials: Past, Present and Future, NASA Technical Memorandum, 100793.
  16. Cheeke, J.D.N. (2012), Fundamentals and Applications of Ultrasonic Waves, CRC Press, Boca Raton, Florida, U.S.A.
  17. Choi, E., Utui, N. and Kim, H.S. (2013), "Experimental and analytical investigations on debonding of hybrid FRPs for flexural strengthening of RC beams", Compos. Part B, 45, 248-256. https://doi.org/10.1016/j.compositesb.2012.06.022
  18. D'Antino, T. and Pellegrino, C. (2014), "Bond between FRP composites and concrete: Assessment of design procedures and analytical models", Compos. Part B, 60, 440-456. https://doi.org/10.1016/j.compositesb.2013.12.075
  19. Diamanti, K., Hodgkinson, J.M. and Soutis, C. (2004), "Detection of low-velocity impact damage in composite plates using lamb waves", Struct. Health Monitor., 3(1), 33-41. https://doi.org/10.1177/1475921704041869
  20. Diamanti, K., Soutis, C. and Hodgkinson, J.M. (2005), "Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams", Compos. Part A, 36, 189-195.
  21. Edwards, R.S., Dixon, S. and Jian, X. (2006), "Depth gauging of defects using low frequency wideband Rayleigh waves", Ultrason., 44, 93-98. https://doi.org/10.1016/j.ultras.2005.08.005
  22. Ettouney, M.M. and Alampalli, S. (2012), Infrastructure Health in Civil Engineering: Application and Management, CRC Press, Boca Raton, Flordia, U.S.A.
  23. Fam, A. and Mirmiran, A. (2014), QA/QC, Maintenance, and Repair of Hybrid Structures, The International Handbook of FRP Composites in Civil Engineering, CRC Press, Boca Raton, Flordia, U.S.A.
  24. Harb, M.S. and Yuan, F.G. (2015), "A rapid, fully non-contact, hybrid system for generating lamb wave dispersion curves", Ultrason., 61, 62-70. https://doi.org/10.1016/j.ultras.2015.03.006
  25. He, S. and Ng, C.T. (2015), "Analysis of mode conversion and scattering of guided waves at cracks in isotropic beams using a time-domain spectral finite element method", Electr. J. Struct. Eng., 14(1), 20-32.
  26. He, S. and Ng, C.T. (2016), "A proabilistic appraoch for quantitative identification of multiple delamination in laminated composite beams using guided waves", Eng. Struct., 127, 602-614. https://doi.org/10.1016/j.engstruct.2016.08.052
  27. He, S. and Ng, C.T. (2017a), "Guided wave-based identification of multiple cracks in beam using a bayesian approach", Mech. Syst. Sig. Proc., 84, 324-345. https://doi.org/10.1016/j.ymssp.2016.07.013
  28. He, S. and Ng, C.T. (2017b), "Modelling and analysis of nonlinear guided waves interaction at a breathing crack using timedomain spectral finit element method", Smart. Mater. Struct., 26, 085002. https://doi.org/10.1088/1361-665X/aa75f3
  29. Hedayatrasa, S., Abhary, K., Uddin, M. and Ng, C.T. (2016), "Optimum design of phonoic crystal perforated plate structures for widest bandgap of fundamental guided wave modes and maximied in-plane stiffness", J. Mech. Phys. Sol., 89, 31-58. https://doi.org/10.1016/j.jmps.2016.01.010
  30. Hevin, G., Abraham, O., Pedersen, H.A. and Campillo, M. (1998), "Characterisation of surface cracks with Rayleigh waves: A numerical model", NDT E Int., 31(4), 289-297. https://doi.org/10.1016/S0963-8695(98)80013-3
  31. Jiang, T., Kong, Q., Patil, D., Luo, Z., Huo, L. and Song, G. (2017), "Detection of debonding between fiber reinforced polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis", IEEE Sens. J., 17(7), 1992-1998. https://doi.org/10.1109/JSEN.2017.2660301
  32. Karbhari, V.M., Kaiser, H., Navada, R., Ghosh, K. and Lee, L. (2005), Methods for Detecting Defects in Composite Rehabilitated Concrete Structures, Oregon Department of Transportation, and Federal Highway Administration, U.S.A.
  33. Khan, M.A. (2010), Bridge and Highway Structure Rehabilitation and Repair, McGraw-Hill, New York, U.S.A.
  34. Ko, H., Matthys, S., Palmieri, A. and Sato, Y. (2014), "Development of a simplified bond stress-slip model for bonded FRP-concrete interfaces", Constr. Build. Mater., 68, 142-157. https://doi.org/10.1016/j.conbuildmat.2014.06.037
  35. Luo, M., Li, W., Hei, C. and Song, G. (2016), "Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method", Sens., 16(12), 1-11. https://doi.org/10.1109/JSEN.2016.2616227
  36. Mirmiran, A., Shahawy, M. and Echary, H.E. (1999), "Acoustic emission monitoring of hybrid FRP-concrete columns", J. Eng. Mech., 125(8), 899-905. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:8(899)
  37. Mohabuth, M., Kotousov, A. and Ng, C.T. (2016), "Effect of uniaxial stress on the propagation of higher-order lamb wave modes", J. Nonlin. Mech., 86, 104-111. https://doi.org/10.1016/j.ijnonlinmec.2016.08.006
  38. Nassr, A.A. and Dakhakhni, W.W.E. (2009), "Damage detection of FRP-strengthened concrete structures using capacitance measurements", J. Compos. Constr., 13(6), 486-497. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000042
  39. Ng, C.T. (2014a), "Bayesian model updating approach for experimental identification of damage in beams using guided waves", Struct. Health Monitor., 13(4), 359-373. https://doi.org/10.1177/1475921714532990
  40. Ng, C.T. (2014b), "On the selection of advanced signal processing techniques for guided wave damage identification using a statistical approach", Eng. Struct., 67, 50-60. https://doi.org/10.1016/j.engstruct.2014.02.019
  41. Ng, C.T. (2015a), "On accuracy of analytical modeling of Lamb wave scattering at delaminations in multilayered isotropic plates", J. Struct. Stab. Dyn., 15(7), 1-12.
  42. Ng, C.T. (2015b), "A two-stage approach for quantitative damage imaging in metallic plates using lamb waves", Earthq. Struct., 8(4), 821-841. https://doi.org/10.12989/eas.2015.8.4.821
  43. Ng, C.T. and Chan, T.H.T. (2014), "Special issue on strucutral health monitoring of civil structures", Struct. Helath Monitor., 13(4), 345-346. https://doi.org/10.1177/1475921714542895
  44. Nishizaki, I. and Meiarashi, S. (2002), "Long-term deterioration of GFRP in water and moist environment", J. Compos. Constr., 6(1), 21-27. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(21)
  45. Pavlakovic, B. and Lowe, M. (2003), DISPERSE Version 2.0.16 User's Manual, Imperial College NDT Laboratory, U.K.
  46. Raghavan, A. and Cesnik, C.E.S. (2007), "Review of guided-wave structural health monitoring", Shock Vibr. Dig., 39(2), 91-114. https://doi.org/10.1177/0583102406075428
  47. Rajagopal, P., Drozdz, M., A.Skelton, E., Lowe, M.J.S. and Craster, R.V. (2012), "On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available Finite Element packages", NDT E Int., 51, 30-40. https://doi.org/10.1016/j.ndteint.2012.04.001
  48. Ramadas, C., Balasubramaniam, K., Joshi, M. and Krishnamurthy, C.V. (2009), "Interaction of the primary anti-symmetric Lamb mode (A0) with symmetric delaminations: Numerical and experimental studies", Smart Mater. Struct., 18, 1-7.
  49. Ramadas, C., Balasubramaniam, K., Joshi, M. and Krishnamurthy, C.V. (2010), "Interaction of guided lamb waves with an asymmetrically located delamination in a laminated composite plate", Smart Mater. Struct., 19, 1-11.
  50. Rose, J.L. (2002), "A baseline and vision of ultrasonic guided wave inspection potential", J. Press. Vess. Technol., 124, 273-282. https://doi.org/10.1115/1.1491272
  51. Schubert, K.J., Brauner, C. and Herrmann, A.S. (2014), "Nondamage-related influences on lamb wave-based structural health monitoring of carbon fiber-reinforced plastic structures", Struct. Health Monitor., 13(2), 158-176. https://doi.org/10.1177/1475921713513975
  52. Sevillano, E., Sun, R., Perera, R., Arteaga, A., De Diego, A. and Cisneros, D. (2016), "Comparison of PZT and FBG sensing technologies for debonding detection on reinforced concrete beams strengthened with external CFRP strips subjected to bending loads", Mater. Constr., 66(322), 1-12.
  53. Shin, S.W., Yun, C.B., Popovics, J.S. and Kim, J.H. (2007), "Improved rayleigh wave velocity measurement for nondestructive early-age concrete monitoring", Res. Nondestr. Eval., 18, 45-68. https://doi.org/10.1080/09349840601128762
  54. Singh, R.K., Ramadas, C., Misal, R.D. and Thakur, D.G. (2012), "Numerical analysis of lamb wave propagation in delaminated composite laminate", Proc. Eng., 380, 2510-2519.
  55. Soleimanpour, R. and Ng, C.T. (2016), "Scattering characteersistics of the fundamental anti-symmetric lamb wave at cracks in isotropic plates", J. Civil Struct. Health Monitor., 6(3), 447-459. https://doi.org/10.1007/s13349-016-0166-7
  56. Soleimanpour, R. and Ng, C.T. (2017a), "Higher harmonic generation of guided waves at delaminations in lamianted composite beams", Struct. Health Monitor., 16(4), 400-417. https://doi.org/10.1177/1475921716673021
  57. Soleimanpour, R. and Ng, C.T. (2017b), "Locating delaminations in lamianted compoiste beams using nonlinear guided waves", Eng. Struct., 131, 207-219. https://doi.org/10.1016/j.engstruct.2016.11.010
  58. Sun, M., Staszewski, W.J., Swamy, R.N. and Li, Z. (2008), "Application of low-profile piezoceramic transducers for health monitoring of concrete structures", NDT E Int., 41(8), 589-595. https://doi.org/10.1016/j.ndteint.2008.06.007
  59. Sun, R., Sevillano, E. and Perera, R. (2015), "Debonding detection of FRP strengthened concrete beams by using impedance measurements and an ensemble PSO adaptive spectral model", Compos. Struct., 125, 374-387. https://doi.org/10.1016/j.compstruct.2015.02.011
  60. Tian, Z., Yu, L. and Leckey, C. (2015), "Delamination detection and quantification on laminated composite structures with lamb waves and wavenumber analysis", J. Intell. Mater. Syst. Struct., 26(13), 1723-1738. https://doi.org/10.1177/1045389X14557506
  61. Turatsinze, A., Beushausen, H., Gagne, R., Granju, J.L., Silfwerbrand, J. and Walter, R. (2011), Bonded Cement-Based Material Overlays for the Repair, the Lining or The Strengthening of Slabs or Pavements, Springer, Dordrecht, the Netherlands.
  62. Washer, G.A. and Alampalli, S. (2014a), Nondestructive Evaluation Methods for Composite Materials: General Overview, Visual Inspection, and Microwave Methods, the International Handbook of FRP Composites in Civil Engineering, CRC Press, Boca Raton, Florida, U.S.A.
  63. Washer, G.A. and Alampalli, S. (2014b), Nondestructive Evaluation Methods for Composite Materials: Infrared Thermography, the International Handbook of FRP Composites in Civil Engineering, CRC Press, Boca Raton, Florida, U.S.A.
  64. Worden, K., Farrar, C.R., Manson, G. and Park, G. (2007), "The fundamental axioms of structural health monitoring", Proc. Trans. R. Soc. A, 463, 1639-1664. https://doi.org/10.1098/rspa.2007.1834
  65. Wu, F. and Chang, F.K. (2006), "Debond detection using embedded piezoelectric elements for reinforced concrete structures-part II: Analysis and algorithm", Struct. Health Monitor., 5(1), 17-28. https://doi.org/10.1177/1475921706057979
  66. Xu, Y., Leung, C.K.Y., Tong, P., Yi, J. and Lee, S.K.L. (2005), "Interfacial debonding detection in bonded repair with a fiber optical interferometric sensor", Compos. Sci. Technol., 65(9), 1428-1435. https://doi.org/10.1016/j.compscitech.2004.12.014
  67. Yang, Y., Ng, C.T., Kotousov, A., Sohn, H. and Lim, H.J. (2018), "Second harmonic generaiton at fatigue cracks by lowfrequency lamb waves: Experimental and numerical studies", Mech. Syst. Sig. Proc., 99, 760-773. https://doi.org/10.1016/j.ymssp.2017.07.011
  68. Zerwer, A., Polak, M.A. and Santamarina, J.C. (2005), "Detection of surface breaking cracks in concrete members using rayleigh waves", J. Environ. Eng. Geophys., 10(3), 1-12. https://doi.org/10.2113/JEEG10.1.1