Acknowledgement
Supported by : National Science Foundation of China, Central Universities of China
References
- Chang, C.C. and Lin, C.J. (2011), "LIBSVM: A library for support vector machines", ACM T. Intel. Syst. Tec., 2(3), 27.
- Chen, K., and Yu, J. (2014), "Short-term wind speed prediction using an unscented kalman filter based state-space support vector regression approach", Appl. Energy, 113, 690-705. https://doi.org/10.1016/j.apenergy.2013.08.025
- Chen, K.Y. (2007), "Forecasting systems reliability based on support vector regression with genetic algorithms", Reliab. Eng. Syst. Safe., 92(4), 423-432. https://doi.org/10.1016/j.ress.2005.12.014
- Cheng, A., Jiang, X., Li, Y., Zhang, C. and Zhu, H. (2017), "Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method", Phys. A, 466, 422-434. https://doi.org/10.1016/j.physa.2016.09.041
- Clarke, S.M., Griebsch, J.H. and Simpson, T.W. (2005), "Analysis of support vector regression for approximation of complex engineering analyses", J. Mech. Design, 127(6), 1077-1087. https://doi.org/10.1115/1.1897403
- Collobert, R. and Bengio, S. (2001), "SVMTorch: Support vector machines for large-scale regression problems", J. Mach. Learn. Res., 1, 143-160.
- Das Chagas Moura, M., Zio, E., Lins, I.D. and Droguett, E. (2011), "Failure and reliability prediction by support vector machines regression of time series data", Reliab. Eng. Syst. Safety, 96(11), 1527-1534. https://doi.org/10.1016/j.ress.2011.06.006
- De Brabanter, K., De Brabanter, J., Suykens, J.A. and De Moor, B. (2011), "Approximate confidence and prediction intervals for least squares support vector regression", IEEE T. Neur. Netw., 22(1), 110-120. https://doi.org/10.1109/TNN.2010.2087769
- Dibike, Y.B., Velickov, S., Solomatine, D. and Abbott, M.B. (2001), "Model induction with support vector machines: Introduction and applications", J. Comput. Civil Eng., 15(3), 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)
- Dong, B., Cao, C. and Lee, S.E. (2005), "Applying support vector machines to predict building energy consumption in tropical region", Energy Build., 37(5), 545-553. https://doi.org/10.1016/j.enbuild.2004.09.009
- Drucker, H., Burges, C.J., Kaufman, L., Smola, A. and Vapnik, V. (1997), "Support vector regression machines", Adv. Neur. Inform. Proc. Syst., 9, 155-161.
- Fan, X., Li, J. and Hao, H. (2016), "Piezoelectric impedance based damage detection in truss bridges based on time-frequency ARMA model", Smart Struct. Syst., 18(3), 501-523. https://doi.org/10.12989/sss.2016.18.3.501
- Kazem, A., Sharifi, E., Hussain, F.K., Saberi, M. and Hussain, O.K. (2013), "Support vector regression with chaos-based firefly algorithm for stock market price forecasting", Appl. Soft Comput., 13(2), 947-958. https://doi.org/10.1016/j.asoc.2012.09.024
- Li, J. Hao, H. and Zhu, H.P. (2014), "Dynamic assessment of shear connectors in composite bridges with ambient vibration measurements", Adv. Struct. Eng., 17(5), 617-638. https://doi.org/10.1260/1369-4332.17.5.617
- Li, J., Hao, H., Fan, K. and Brownjohn, J. (2015), "Development and application of a relative displacement sensor for structural health monitoring of composite bridges", Struct. Contr. Health Monitor., 22(4), 726-742. https://doi.org/10.1002/stc.1714
- Lin, J.Y., Cheng, C.T. and Chau, K.W. (2006), "Using support vector machines for long-term discharge prediction", Hydrol. Sci. J., 51(4), 599-612. https://doi.org/10.1623/hysj.51.4.599
- Lu, C.J., Lee, T.S. and Chiu, C.C. (2009), "Financial time series forecasting using independent component analysis and support vector regression", Dec. Supp. Syst., 47(2), 115-125. https://doi.org/10.1016/j.dss.2009.02.001
- Muller, K.R., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J. and Vapnik, V. (1999), "Using support vector machines for time series prediction", Adv. Kern. Meth., 243-254.
- Ni, Y.Q., Xia, H.W., Wong, K.Y. and Ko, J.M. (2012), "In-service condition assessment of bridge deck using long-term monitoring data of strain response", J. Brid. Eng., 17(6), 876-885. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000321
- Qiu, S. and Lane, T. (2009), "A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction", IEEE ACM T. Comput. Bi., 6(2), 190-199.
- Salcedo-Sanz, S., Ortiz-Garci, E.G., Perez-Bellido, A.M., Portilla-Figueras, A. and Prieto, L. (2011), "Short term wind speed prediction based on evolutionary support vector regression algorithms", Exp. Syst. Appl., 38(4), 4052-4057. https://doi.org/10.1016/j.eswa.2010.09.067
- Sapankevych, N.I. and Sankar, R. (2009), "Time series prediction using support vector machines: a survey", IEEE Comput. Intell. M., 4(2).
- Shin, K.S., Lee, T.S. and Kim, H.J. (2005), "An application of support vector machines in bankruptcy prediction model", Exp. Syst. Appl., 28(1), 127-135. https://doi.org/10.1016/j.eswa.2004.08.009
- Smola, A.J. and Scholkopf, B. (2004), "A tutorial on support vector regression", Stat. Comput., 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
- Soares, C., Brazdil, P.B. and Kuba, P. (2004), "A meta-learning method to select the kernel width in support vector regression", Mach. Learn., 54(3), 195-209. https://doi.org/10.1023/B:MACH.0000015879.28004.9b
- Song, M., Breneman, C.M., Bi, J., Sukumar, N., Bennett, K.P., Cramer, S. and Tugcu, N. (2002), "Prediction of protein retention times in anion-exchange chromatography systems using support vector regression", J. Chem. Inf. Sci., 42(6), 1347-1357. https://doi.org/10.1021/ci025580t
- Thissen, U., Van Brakel, R., De Weijer, A.P., Melssen, W.J. and Buydens, L.M.C. (2003), "Using support vector machines for time series prediction", Chemometr. Intel. Lab., 69(1), 35-49. https://doi.org/10.1016/S0169-7439(03)00111-4
- Wu, C.H., Ho, J.M. and Lee, D.T. (2004), "Travel-time prediction with support vector regression", IEEE T. Intell. Transp., 5(4), 276-281. https://doi.org/10.1109/TITS.2004.837813
- Wu, C.L., Chau, K.W. and Li, Y.S. (2008), "River stage prediction based on a distributed support vector regression", J. Hydrol., 358(1), 96-111. https://doi.org/10.1016/j.jhydrol.2008.05.028
- Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Force monitoring of steel cables using vision-based sensing technology: Methodology and experimental verification", Smart Struct. Syst., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585
- Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363
- Ye, X.W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012), "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data", Eng. Struct., 45, 166-176. https://doi.org/10.1016/j.engstruct.2012.06.016
- Ye, X.W., Su, Y.H. and Han, J.P. (2014), "Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review", Sci. World J., 1-11.
- Ye, X.W., Su, Y.H., Xi, P.S., Chen, B. and Han, J.P. (2016c), "Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge", Smart Struct. Syst., 17(6), 1087-1105. https://doi.org/10.12989/sss.2016.17.6.1087
- Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016d), "Visionbased structural displacement measurement: System performance evaluation and influence factor analysis", Measure., 88, 372-384.
- Ye, X.W., Yi, T.H., Dong, C.Z., Liu, T. and Bai, H. (2015), "Multi-point displacement monitoring of bridges using a visionbased approach", Wind Struct., 20(2), 315-326. https://doi.org/10.12989/was.2015.20.2.315
- Yi, T.H., Li, H.N. and Gu, M. (2013a), "Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer", Smart Struct. Syst., 11(4), 331-348. https://doi.org/10.12989/sss.2013.11.4.331
- Yi, T.H., Li, H.N. and Sun, H.M. (2013b), "Multi-stage structural damage diagnosis method based on "energy-damage" theory", Smart Struct. Syst., 12(3-4), 345-361. https://doi.org/10.12989/sss.2013.12.3_4.345
- Yi, T.H., Li, H.N. and Zhang, X.D. (2015), "Health monitoring sensor placement optimization for Canton Tower using immune monkey algorithm", Struct. Contr. Health Monitor., 22(1), 123-138. https://doi.org/10.1002/stc.1664
- Zhang, L., Zhou, W.D., Chang, P.C., Yang, J.W. and Li, F.Z. (2013), "Iterated time series prediction with multiple support vector regression models", Neurocomput., 99, 411-422. https://doi.org/10.1016/j.neucom.2012.06.030
Cited by
- Vibration-based method for story-level damage detection of the reinforced concrete structure vol.27, pp.1, 2017, https://doi.org/10.12989/cac.2021.27.1.029