DOI QR코드

DOI QR Code

Optimizing Path Finding based on Dijkstra's Algorithm for a Quadruped Walking Robot TITAN-VIII

4족보행 로봇 TITAN-VIII의 Dijkstra's Algorithm을 이용한 최적경로 탐색

  • Nguyen, Van Tien (Graduate School, Mokpo National Maritime University) ;
  • Ahn, Byong-Won (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Bae, Cherl-O (Division of Marine Engineering & Coast Guard, Mokpo National Maritime University)
  • ;
  • 안병원 (목포해양대학교 기관시스템공학부) ;
  • 배철오 (목포해양대학교 기관.해양경찰학부)
  • Received : 2017.05.29
  • Accepted : 2017.08.28
  • Published : 2017.08.31

Abstract

In this paper, the optimizing path finding control method is studied for a Legged-robot. It's named TITAN-VIII. It has a lot of advantages over the wheeled robot in the ability to walk freely on an irregular ground. However, the moving speed on the ground of the Legged-robot is slower than the Wheeled-robot's. Consequently, the purpose of the method is presented in this paper to minimize its time when it walks to a goal. It find the path, our approach is based on an algorithm which is called Dijkstra's algorithm. In the rest of paper, the various posture of the robot is discussed to keep the robot always in the statically stable. Based on above works, the math formulas are presented to determine the joint angles of the robot. After that an algorithm is designed to find and keep robot on the desired trajectory. Experimental results of the proposed method are demonstrated in the last of paper.

본 논문에서는 보행로봇의 일종인 TITAN-VIII라 불리는 로봇을 이용하여 가장 짧은 경로를 탐색하여 이동하는 방법에 관한 연구를 나타낸다. 보행로봇의 경우 바퀴구동 로봇에 비해 불규칙한 지면 위를 자유로이 이동 가능한 장점 등을 가지고 있는데 반해 이동속도는 바퀴구동 로봇에 비해 느린 편이다. 따라서 본 논문에서는 목적지에 도달하기까지 시간을 최소화하는 최적경로 탐색 제어방법을 제시하였다. 경로를 탐색하기 위해 Dijkstra's algorithm라 불리는 알고리즘을 기반으로 하여 적용하였다. 또한 로봇이 항상 정적인 자세를 유지하는 로봇의 다양한 자세에 대해서도 다루었다. 로봇의 자세제어와 알고리즘을 통하여 로봇의 관절각 결정에 필요한 여러 수학방정식을 제시하였다. 그 후 원하는 궤적으로 로봇이 이동하고 탐색하는 알고리즘을 고안하였고, 제안한 방법의 결과를 실험으로 확인하였다.

Keywords

References

  1. Chen, X., K. Watanabe and K. Izumi(2000), Kinematic Solution of a Quadruped Walking Robot Posture Analysis of TITAN-VIII, Process of 14th IFAC World Congress, Vol. B, pp. 343-348.
  2. Chen, X., K. Watanabe, K. Kiguchi and K. Izumi(2001), Implementation of omnidirectional crawl for a quadruped robot, Advanced Robotics, Vol. 15, No. 2, pp. 169-190. https://doi.org/10.1163/15685530152116218
  3. Chen, X., K. Watanabe, K. Kiguchi and K. Izumi(2002), Path Tracking Based on Closed-Loop Control for a Quadruped Robot in a Cluttered Environment, Transactions of ASME, Vol. 24, pp. 272-280.
  4. Dijkstra, E. W.(1959), A note on two problems in connection with graphs, Numerische Mathematik, Vol. 1, No. 1, pp. 269-271. https://doi.org/10.1007/BF01386390
  5. Hirose, S.(1984), A Study of Design and Control of a Quadruped Walking, Int. J. Robot. Res., Vol. 3, No. 2, pp. 113-133. https://doi.org/10.1177/027836498400300210
  6. Hirose, S., Y. Fukuda and H. Kikuchi(2002), The gait control system of quadruped walking vehicle, J. Robotics Soc, http://www.tandfonline.com/doi/abs/10.1163/156855386X00193.
  7. Izumi, K., K. Watanabe and R. Sato(2001), Behavior selection based navigation and obstacle avoidance approaching visual and ultrasonic sensory information for Quadruped robots, Advanced robotic systems, http://journals.sagepub.com/doi/full /10.5772/6234.
  8. Pan, J. and J. Cheng(1991), Study on quadruped walking robot climbing and walking down slope, Proc. IEEE / RSJ Int. Workshop on Intelligent Robots and Systems, Osaka, Japan, pp. 1531-1534.