DOI QR코드

DOI QR Code

Isolation and characterization of two phototropins in the freshwater green alga, Spirogyra varians (Streptophyta, Zygnematales)

  • Received : 2017.07.16
  • Accepted : 2017.09.09
  • Published : 2017.09.30

Abstract

Freshwater algae living in shallow waters have evolved various photomovement to stay in the optimum light condition for survival. Previous action-spectra investigations showed that Spirogyra filaments have phototropic movement in blue light. To decipher the genetic control of phototropic movement, two phototropin homologues were isolated from Spirogyra varians, and named SvphotA and SvphotB. Both phototropins have similar molecular structure consisted of two light-oxygen-voltage domains (LOV1, LOV2) and a serine / threonine kinase domain. SvphotA and SvphotB had 48.7% sequence identity. Phylogenetic analysis showed SvphotA and SvphotB belong to different clades suggesting early divergence, possibly before the divergence of land plants from the Zygnematales. Quantitative PCR and northern blot analysis showed that SvphotA and SvphotB responded differently to red and blue light. SvphotA was consistently expressed in the dark and in blue light, while SvphotB was expressed only when the plants were exposed to light. When the filaments were exposed to red light, SvphotA was significantly downregulated whereas SvphotB was highly upregulated. These results suggest that the two phototropins may have different roles in the photoresponse in S. varians.

Keywords

References

  1. Banas, A. K., Aggarwal, C., Labuz, J., Sztatelman, O. & Gabrys, H. 2012. Blue light signalling in chloroplast movements. J. Exp. Bot. 63:1559-1574. https://doi.org/10.1093/jxb/err429
  2. Diehl, N., Kim, G. H. & Zuccarello, G. C. 2017. A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota). Algae 32:29-39. https://doi.org/10.4490/algae.2017.32.2.25
  3. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. https://doi.org/10.1093/nar/gkh340
  4. Ermilova, E. V., Zalutskaya, Z. M., Huang, K. & Beck, C. F. 2004. Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas. Planta 219:420-427.
  5. Han, J. H., Klochkova, T. A., Han, J. W., Shim, J. & Kim, G. H. 2015. Transcriptome analysis of the short-term photosynthetic sea slug Placida dendritica. Algae 30:303-312. https://doi.org/10.4490/algae.2015.30.4.303
  6. Han, J. W. & Kim, G. H. 2013. An ELIP-like gene in the freshwater green alga, Spirogyra varians (Zygnematales), is regulated by cold stress and $CO_2$ influx. J. Appl. Phycol. 25:1297-1307. https://doi.org/10.1007/s10811-013-9975-9
  7. Han, J. W., Yoon, K. S., Jung, M. G., Chah, K. -H. & Kim, G. H. 2012. Molecular characterization of a lectin, BPL-4, from the marine green alga Bryopsis plumosa (Chlorophyta). Algae 27:55-62. https://doi.org/10.4490/algae.2012.27.1.055
  8. Hoang, N., Bouly, J. P. & Ahmad, M. 2008. Evidence of a lightsensing role for folate in Arabidopsis cryptochrome blue-light receptors. Mol. Plant 1:68-74. https://doi.org/10.1093/mp/ssm008
  9. Hofmeister, W. 1874. Uber die Bewegungen der Faden der Spirogyra princeps. Nat. Wurttemb 30:211-226.
  10. Huala, E., Oeller, P. W., Liscum, E., Han, I. S., Larsen, E. & Briggs, W. R. 1997. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120-2123. https://doi.org/10.1126/science.278.5346.2120
  11. Huang, K. & Beck, C. F. 2003. Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 100:6269-6274. https://doi.org/10.1073/pnas.0931459100
  12. Huang, K., Merkle, T. & Beck, C. F. 2002. Isolation and characterization of a Chlamydomonas gene that encodes a putative blue-light photoreceptor of the phototropin family. Physiol. Plant. 115:613-622. https://doi.org/10.1034/j.1399-3054.2002.1150416.x
  13. Huelsenbeck, J. P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  14. Im, C. S., Eberhard, S., Huang, K., Beck, C. F. & Grossman, A. R. 2006. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J. 48:1-16. https://doi.org/10.1111/j.1365-313X.2006.02852.x
  15. Inoue, S., Kinoshita, T. & Shimazaki, K. 2005. Possible involvement of phototropins in leaf movement of kidney bean in response to blue light. Plant Physiol. 138:1994-2004. https://doi.org/10.1104/pp.105.062026
  16. Jain, M., Sharma, P., Tyagi, S. B., Tyagi, A. K. & Khurana, J. P. 2007. Light regulation and differential tissue-specific expression of phototropin homologues from rice (Oryza sativa ssp. indica). Plant Sci. 172:164-171. https://doi.org/10.1016/j.plantsci.2006.08.003
  17. Jarillo, J. A., Gabrys, H., Capel, J., Alonso, J. M., Ecker, J. R. & Cashmore, A. R. 2001. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952-954. https://doi.org/10.1038/35073622
  18. Kagawa, T., Kasahara, M., Abe, T., Yoshida, S. & Wada, M. 2004. Function analysis of phototropin2 using fern mutants deficient in blue light-induced chloroplast avoidance movement. Plant Cell Physiol. 45:416-426. https://doi.org/10.1093/pcp/pch045
  19. Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K. & Wada, M. 2001. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138-2141. https://doi.org/10.1126/science.291.5511.2138
  20. Kami, C., Lorrain, S., Hornitschek, P. & Fankhauser, C. 2010. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91:29-66.
  21. Kang, B., Grancher, N., Koyffmann, V., Lardemer, D., Burney, S. & Ahmad, M. 2008. Multiple interactions between cryptochrome and phototropin blue-light signaling pathways in Arabidopsis thaliana. Planta 227:1091-1099. https://doi.org/10.1007/s00425-007-0683-z
  22. Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M. & Wada, M. 2002. Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829-832. https://doi.org/10.1038/nature01213
  23. Kianianmomeni, A. & Hallmann, A. 2014. Algal photoreceptors: in vivo functions and potential applications. Planta 239:1-26. https://doi.org/10.1007/s00425-013-1962-5
  24. Kim, G. H., Yoon, M. & Klotchkova, T. A. 2005. A moving mat: phototaxis in the filamentous green algae Spirogyra (Chlorophyta, Zygnemataceae). J. Phycol. 41:232-237. https://doi.org/10.1111/j.1529-8817.2005.03234.x
  25. Klochkova, T. A., Jung, S. & Kim, G. H. 2016. Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin. J. Appl. Phycol. 29:371-379.
  26. Labuz, J., Sztatelman, O., Banas, A. K. & Gabrys, H. 2012. The expression of phototropins in Arabidopsis leaves: developmental and light regulation. J. Exp. Bot. 63:1763-1771. https://doi.org/10.1093/jxb/ers061
  27. Li, F. W., Rothfels, C. J., Melkonian, M., Villarreal, J. C., Stevenson, D. W., Graham, S. W., Wong, G. K., Mathews, S. & Pryer, K. M. 2015. The origin and evolution of phototropins. Front. Plant Sci. 6:637.
  28. Livak, K. J. & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}CT$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  29. Ma, L., Sun, N., Liu, X., Jiao, Y., Zhao, H. & Deng, X. W. 2005. Organ-specific expression of Arabidopsis genome during development. Plant Physiol. 138:80-91. https://doi.org/10.1104/pp.104.054783
  30. Ojima, S. & Tanaka, K. 1970. Studies on the growth and development in Spirogyra. I. Diurnal movement of the filaments. Sci. Rep. Hirosaki Univ. 17:15-26.
  31. Onodera, A., Kong, S. G., Doi, M., Shimazaki, K., Christie, J., Mochizuki, N. & Nagatani, A. 2005. Phototropin from Chlamydomonas reinhardtii is functional in Arabidopsis thaliana. Plant Cell Physiol. 46:367-374. https://doi.org/10.1093/pcp/pci037
  32. Prochnik, S. E., Umen, J., Nedelcu, A. M., Hallmann, A., Miller, S. M., Nishii, I., Ferris, P., Kuo, A., Mitros, T., Fritz-Laylin, L. K., Hellsten, U., Chapman, J., Simakov, O., Rensing, S. A., Terry, A., Pangilinan, J., Kapitonov, V., Jurka, J., Salamov, A., Shapiro, H., Schmutz, J., Grimwood, J., Lindquist, E., Lucas, S., Grigoriev, I. V., Schmitt, R., Kirk, D. & Rokhsar, D. S. 2010. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223-226. https://doi.org/10.1126/science.1188800
  33. Shim, J., Shim, E., Kim, G. H., Han, J. W. & Zuccarello, G. C. 2016. Keeping house: evaluation of housekeeping genes for real-time PCR in the red alga, Bostrychia moritziana (Florideophyceae). Algae 31:167-174. https://doi.org/10.4490/algae.2016.31.5.25
  34. Song, S. H., Dick, B., Penzkofer, A., Pokorny, R., Batschauer, A. & Essen, L. O. 2006. Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. J. Photochem. Photobiol. B. 85:1-16. https://doi.org/10.1016/j.jphotobiol.2006.03.007
  35. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  36. Suetsugu, N., Mittmann, F., Wagner, G., Hughes, J. & Wada, M. 2005. A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc. Natl. Acad. Sci. U. S. A. 102:13705-13709. https://doi.org/10.1073/pnas.0504734102
  37. Suetsugu, N. & Wada, M. 2007. Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants. Photochem. Photobiol. 83:87-93.
  38. Tanaka, K., Kitazawa, S., Sasaki, T., Ooshima, N. & Yamada, T. 1986. Studies on the growth and development in Spirogyra. VI. Phototropic response of Spirogyra filaments. Planta 167:19-25. https://doi.org/10.1007/BF00446363

Cited by

  1. Review on the biotechnological and nanotechnological potential of the streptophyte genus Klebsormidium with pilot data on its phycoprospecting and polyphasic identification in Bulgaria vol.33, pp.1, 2017, https://doi.org/10.1080/13102818.2019.1593887
  2. Red And far‐red regulation of filament movement correlates with the expression of phytochrome and FHY1 genes in Spirogyra varians (Zygnematales, Streptophyta)1 vol.55, pp.3, 2017, https://doi.org/10.1111/jpy.12849