DOI QR코드

DOI QR Code

Chitosan Based Silver Nanocomposites (CAgNCs) Display Antibacterial Effects against Vibrio ichthyoenteri

  • Beom, Seo Seung (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University) ;
  • Shin, Sang Yeop (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University) ;
  • Dananjaya, S.H.S. (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University) ;
  • De Silva, A.B.K.H. (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University) ;
  • Nikapitiya, Chamilani (Fish Vaccine Research Center, Jeju National University) ;
  • Cho, Jongki (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University) ;
  • Park, Gun-Hoo (Korea Institute of Ocean Science and Technology) ;
  • Oh, Chulhong (Korea Institute of Ocean Science and Technology) ;
  • Kang, Do-Hyung (Korea Institute of Ocean Science and Technology) ;
  • De Zoysa, Mahanama (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University)
  • Received : 2017.03.20
  • Accepted : 2017.07.26
  • Published : 2017.08.31

Abstract

The aim of this study was to investigate the antibacterial properties of chitosan silver nanocomposites (CAgNCs) using pathogenic Vibrio ichthyoenteri as a bacterial model. Results of agar disc diffusion and turbidimetric assays showed that CAgNCs could inhibit the growth of V. ichthyoenteri in concentration dependent manner. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs were 75 and $125{\mu}g/mL$, respectively. Furthermore, CAgNCs treatment induced the reactive oxygen species (ROS) level in V. ichthyoenteri cells in concentration and time dependent manner, suggesting that it generates oxidative stress, leading to bacterial cell death. The field emission scanning electron microscope (FE-SEM) images of CAgNCs treated V. ichthyoenteri exhibited strong cell membrane damage than un-treated control bacteria. MTT assay results showed the highest cell viability (22%) at $75{\mu}g/mL$ of CAgNCs treated bacteria samples. The results from this study suggest that CAgNCs is a potential antibacterial agent to control fish pathogenic bacteria.

Keywords

References

  1. Aliasghari A, Khorasgani MR, Vaezifar S, Rahimi F, Younesi H, Khoroushi M. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: an in vitro study. IRAN J Microbiol 2016; 8: 93-100.
  2. Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticlebacteria interface. Sci Rep 2015; 5: 14813. https://doi.org/10.1038/srep14813
  3. Arakha M, Saleem M, Mallick BC, and Jha S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 2015; 5: 9578. https://doi.org/10.1038/srep09578
  4. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 2012; 7: 6003-6009.
  5. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosansilver nanoparticle composite. Langmuir 2010; 26: 5901-5908. https://doi.org/10.1021/la9038528
  6. Bekele AZ, Gokulan K, Williams KM, Khare S. Dose and size-dependent antiviral effects of silver nanoparticles on feline calicivirus, a human norovirus surrogate. Foodborne Pathog Dis 2016; 13: 239-244. https://doi.org/10.1089/fpd.2015.2054
  7. Borse S, Temgire M, Khan A, Joshi S. Photochemically assisted one-pot synthesis of PMMA embedded silver nanoparticles: Antibacterial efficacy and water treatment. RSC Adv 2016; 6: 56674-56683. https://doi.org/10.1039/C6RA08397H
  8. Chen SL, Ren GC, Sha ZX, Shi CY. Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Org 2004; 60, 241-246. https://doi.org/10.3354/dao060241
  9. Dananjaya SHS, Godahewa GI, Jayasooriya RGPT, Lee Jh, Zoysa, MD. Antimicrobial effects of chitosan silver nano composites (CAgNCs) on fish pathogenic Aliivibrio (Vibrio) salmonicida. Aquaculture 2016; 450: 422-430. https://doi.org/10.1016/j.aquaculture.2015.08.023
  10. Dananjaya SHS, Godahewa GI, Lee YD, Cho JK, Lee JH, Zoysa MD. Chitosan silver nano composites (CAgNCs) as antibacterial agent against fish pathogenic Edwardsiella tarda. J Vet Clin 2014; 31: 502-506. https://doi.org/10.17555/ksvc.2014.12.31.6.502
  11. Dananjaya SHS, Kulatunga DCM, Godahewa GI, Lee J, De Zoysa M. Comparative study of preparation, characterization and anticandidal activities of a chitosan silver nanocomposite (CAgNC) compared with low molecular weight chitosan (LMW-chitosan). RSC Adv 2016; 6: 33455. https://doi.org/10.1039/C6RA03917K
  12. Das B, Dash SK, Mandal D, Adhikary J, Chattopadhyay S, Tripathy S, Dey A, Manna S, Dey SK, Das D, Roy S. Green-synthesized silver nanoparticles kill virulent multidrugresistant Pseudomonas aeruginosa strains: A mechanistic study. BLDE Univ J Health Sci 2016; 1: 89-101. https://doi.org/10.4103/2468-838X.196087
  13. Goy RC, de Britto D, Assis OBG. A Review of the antimicrobial activity of chitosan, Polymers 2009: 19: 241-247.
  14. Gu BK, Park SJ, Kim MS, Kang CM, Kim JI, Kim CH. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohyd Polym 2013; 97: 65-73. https://doi.org/10.1016/j.carbpol.2013.04.060
  15. Gyliene O, Serviene E, Vepstaite I, Binkiene R, Baranauskas M, Luksa J. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli. Carbohydr Polym 2015; 131: 218-223. https://doi.org/10.1016/j.carbpol.2015.05.068
  16. Karaman DS, Sarwar S, Desai D, Bjork EM, Oden M, Chakrabarti P, Rosenholm JM, Chakraborti S. Shape engineering boost antibacterial activity of chitosan coated mesoporous silica nanoparticle doped with silver: A mechanistic investigation. J Mater Chem B 2016; 4: 3292-3304. https://doi.org/10.1039/C5TB02526E
  17. Kim DH, Han HJ, Kim SH, Lee DC, Park SI. Bacterial enteritis and the development of the larval digestive tract in olive flounder, Paralichthys olivaceus (Temminck & Schlegel). J Fish Dis 2004; 27: 497-505. https://doi.org/10.1111/j.1365-2761.2004.00553.x
  18. Kim JS, Kuk EY, Yu KN, Kim JH, Park SJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 2007; 3: 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  19. Kim MS, Cho JY, Choi HS. Identification of Vibrio harveyi, Vibrio ichthyoenteri, and Photobacterium damselae isolated from olive flounder Paralichthys olivaceus in Korea by multiplex PCR developed using the rpoB gene. Fish Sci 2014; 80: 333-339. https://doi.org/10.1007/s12562-014-0702-5
  20. Krishnan SK, Prokhorov E, Iturriaga MH, Morales JDM, Lepe MV, Kovalenko Y, Sanchez IC, Barcenas GL. Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J 2015; 67: 242-251. https://doi.org/10.1016/j.eurpolymj.2015.03.066
  21. Lee DC, Han HJ, Choi SY, Kronvall G, Park CI, Kim DH. Antibiograms and the estimation of epidemiological cut off values for Vibrio ichthyoenteri isolated from larval olive flounder, Paralichthys olivaceus, Aquaculture 2012; 342-343: 31-35. https://doi.org/10.1016/j.aquaculture.2012.02.011
  22. Lopez-Carballo G, Higueras L, Gavara R, Hernandez-Munoz P. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agr Food Chem 2013; 61: 260-267. https://doi.org/10.1021/jf304006y
  23. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  24. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 2016; 6: 1-15.
  25. Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int J Microbiol 2008; 124: 142-146. https://doi.org/10.1016/j.ijfoodmicro.2008.03.004
  26. Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L. Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multidrug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 2016; 6: 24929. https://doi.org/10.1038/srep24929
  27. Shariatinia Z, Fazli M. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocol 2015; 46: 112-124. https://doi.org/10.1016/j.foodhyd.2014.12.026
  28. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc immunol 2001. Appendix 3, Appendix 3B.
  29. Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, Huang FL, Dong RX, Lin JJ. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 2009; 30: 5979-5987. https://doi.org/10.1016/j.biomaterials.2009.07.030
  30. Thirumurugan G, Seshagiri RJV, Dhanaraju MD Elucidating pharmacodynamics interaction of silver nanoparticle-topical deliverable antibiotics. Sci. rep 2016; 6: 29982. https://doi.org/10.1038/srep29982
  31. Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 2009; 10: 1429-1435. https://doi.org/10.1021/bm900039x
  32. Williams KM, Gokulan K, Cerniglia CE, Khare S. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J. Nanobiotechnology 2016; 14: 62. https://doi.org/10.1186/s12951-016-0214-9
  33. Xing K, Chen XG, Liu CH, Cha DS, Park HJ. Oleoylchitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int J Food Microbiol 2009; 132: 127-133. https://doi.org/10.1016/j.ijfoodmicro.2009.04.013

Cited by

  1. Spirulina maxima Derived Pectin Nanoparticles Enhance the Immunomodulation, Stress Tolerance, and Wound Healing in Zebrafish vol.18, pp.11, 2020, https://doi.org/10.3390/md18110556