References
- Aliasghari A, Khorasgani MR, Vaezifar S, Rahimi F, Younesi H, Khoroushi M. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: an in vitro study. IRAN J Microbiol 2016; 8: 93-100.
- Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticlebacteria interface. Sci Rep 2015; 5: 14813. https://doi.org/10.1038/srep14813
- Arakha M, Saleem M, Mallick BC, and Jha S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 2015; 5: 9578. https://doi.org/10.1038/srep09578
- Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 2012; 7: 6003-6009.
- Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosansilver nanoparticle composite. Langmuir 2010; 26: 5901-5908. https://doi.org/10.1021/la9038528
- Bekele AZ, Gokulan K, Williams KM, Khare S. Dose and size-dependent antiviral effects of silver nanoparticles on feline calicivirus, a human norovirus surrogate. Foodborne Pathog Dis 2016; 13: 239-244. https://doi.org/10.1089/fpd.2015.2054
- Borse S, Temgire M, Khan A, Joshi S. Photochemically assisted one-pot synthesis of PMMA embedded silver nanoparticles: Antibacterial efficacy and water treatment. RSC Adv 2016; 6: 56674-56683. https://doi.org/10.1039/C6RA08397H
- Chen SL, Ren GC, Sha ZX, Shi CY. Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Org 2004; 60, 241-246. https://doi.org/10.3354/dao060241
- Dananjaya SHS, Godahewa GI, Jayasooriya RGPT, Lee Jh, Zoysa, MD. Antimicrobial effects of chitosan silver nano composites (CAgNCs) on fish pathogenic Aliivibrio (Vibrio) salmonicida. Aquaculture 2016; 450: 422-430. https://doi.org/10.1016/j.aquaculture.2015.08.023
- Dananjaya SHS, Godahewa GI, Lee YD, Cho JK, Lee JH, Zoysa MD. Chitosan silver nano composites (CAgNCs) as antibacterial agent against fish pathogenic Edwardsiella tarda. J Vet Clin 2014; 31: 502-506. https://doi.org/10.17555/ksvc.2014.12.31.6.502
- Dananjaya SHS, Kulatunga DCM, Godahewa GI, Lee J, De Zoysa M. Comparative study of preparation, characterization and anticandidal activities of a chitosan silver nanocomposite (CAgNC) compared with low molecular weight chitosan (LMW-chitosan). RSC Adv 2016; 6: 33455. https://doi.org/10.1039/C6RA03917K
- Das B, Dash SK, Mandal D, Adhikary J, Chattopadhyay S, Tripathy S, Dey A, Manna S, Dey SK, Das D, Roy S. Green-synthesized silver nanoparticles kill virulent multidrugresistant Pseudomonas aeruginosa strains: A mechanistic study. BLDE Univ J Health Sci 2016; 1: 89-101. https://doi.org/10.4103/2468-838X.196087
- Goy RC, de Britto D, Assis OBG. A Review of the antimicrobial activity of chitosan, Polymers 2009: 19: 241-247.
- Gu BK, Park SJ, Kim MS, Kang CM, Kim JI, Kim CH. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohyd Polym 2013; 97: 65-73. https://doi.org/10.1016/j.carbpol.2013.04.060
- Gyliene O, Serviene E, Vepstaite I, Binkiene R, Baranauskas M, Luksa J. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli. Carbohydr Polym 2015; 131: 218-223. https://doi.org/10.1016/j.carbpol.2015.05.068
- Karaman DS, Sarwar S, Desai D, Bjork EM, Oden M, Chakrabarti P, Rosenholm JM, Chakraborti S. Shape engineering boost antibacterial activity of chitosan coated mesoporous silica nanoparticle doped with silver: A mechanistic investigation. J Mater Chem B 2016; 4: 3292-3304. https://doi.org/10.1039/C5TB02526E
- Kim DH, Han HJ, Kim SH, Lee DC, Park SI. Bacterial enteritis and the development of the larval digestive tract in olive flounder, Paralichthys olivaceus (Temminck & Schlegel). J Fish Dis 2004; 27: 497-505. https://doi.org/10.1111/j.1365-2761.2004.00553.x
- Kim JS, Kuk EY, Yu KN, Kim JH, Park SJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 2007; 3: 95-101. https://doi.org/10.1016/j.nano.2006.12.001
- Kim MS, Cho JY, Choi HS. Identification of Vibrio harveyi, Vibrio ichthyoenteri, and Photobacterium damselae isolated from olive flounder Paralichthys olivaceus in Korea by multiplex PCR developed using the rpoB gene. Fish Sci 2014; 80: 333-339. https://doi.org/10.1007/s12562-014-0702-5
- Krishnan SK, Prokhorov E, Iturriaga MH, Morales JDM, Lepe MV, Kovalenko Y, Sanchez IC, Barcenas GL. Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J 2015; 67: 242-251. https://doi.org/10.1016/j.eurpolymj.2015.03.066
- Lee DC, Han HJ, Choi SY, Kronvall G, Park CI, Kim DH. Antibiograms and the estimation of epidemiological cut off values for Vibrio ichthyoenteri isolated from larval olive flounder, Paralichthys olivaceus, Aquaculture 2012; 342-343: 31-35. https://doi.org/10.1016/j.aquaculture.2012.02.011
- Lopez-Carballo G, Higueras L, Gavara R, Hernandez-Munoz P. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agr Food Chem 2013; 61: 260-267. https://doi.org/10.1021/jf304006y
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 2016; 6: 1-15.
- Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int J Microbiol 2008; 124: 142-146. https://doi.org/10.1016/j.ijfoodmicro.2008.03.004
- Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L. Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multidrug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 2016; 6: 24929. https://doi.org/10.1038/srep24929
- Shariatinia Z, Fazli M. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocol 2015; 46: 112-124. https://doi.org/10.1016/j.foodhyd.2014.12.026
- Strober W. Trypan blue exclusion test of cell viability. Curr Protoc immunol 2001. Appendix 3, Appendix 3B.
- Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, Huang FL, Dong RX, Lin JJ. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 2009; 30: 5979-5987. https://doi.org/10.1016/j.biomaterials.2009.07.030
- Thirumurugan G, Seshagiri RJV, Dhanaraju MD Elucidating pharmacodynamics interaction of silver nanoparticle-topical deliverable antibiotics. Sci. rep 2016; 6: 29982. https://doi.org/10.1038/srep29982
- Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 2009; 10: 1429-1435. https://doi.org/10.1021/bm900039x
- Williams KM, Gokulan K, Cerniglia CE, Khare S. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J. Nanobiotechnology 2016; 14: 62. https://doi.org/10.1186/s12951-016-0214-9
- Xing K, Chen XG, Liu CH, Cha DS, Park HJ. Oleoylchitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int J Food Microbiol 2009; 132: 127-133. https://doi.org/10.1016/j.ijfoodmicro.2009.04.013
Cited by
- Spirulina maxima Derived Pectin Nanoparticles Enhance the Immunomodulation, Stress Tolerance, and Wound Healing in Zebrafish vol.18, pp.11, 2020, https://doi.org/10.3390/md18110556