DOI QR코드

DOI QR Code

한국, 미국, 영국, 싱가포르의 과학 교육과정 비교 - 에너지 개념을 중심으로 -

Comparison of the Science Curricula of Korea, the United States, England, and Singapore: Focus on the Concept of Energy

  • 투고 : 2017.07.17
  • 심사 : 2017.09.07
  • 발행 : 2017.10.31

초록

에너지는 매우 복합적인 과학개념으로 많은 국가의 과학 교육과정에서 핵심을 이루는 개념이지만, 교수 학습 과정에서 많은 어려움을 야기하는 개념이기도 하다. 본 연구는 한국, 미국, 영국, 싱가포르의 교육과정을 비교분석하여 향후 교육과정 개정 시 고려해야 하는 에너지 교육과정의 쟁점들을 추출하고자 하였다. 이를 위해 한국의 2015 개정교육과정, 미국의 차세대 과학교육표준(NGSS, Next Generation Science Standards), 영국의 과학 교육과정(National curriculum in England: Science programmes of study), 싱가포르의 과학 교육과정(Science syllabus)에서 에너지를 명시적으로 포함하는 성취기준들을 추출하여, 여섯 가지 개념 요소(에너지 형태, 에너지 자원, 에너지 전달, 에너지 전환, 에너지 보존, 에너지 산일)에 따라 분류하고 비교하였다. 에너지 관련 성취기준이 학교 급별, 학문 영역별, 에너지 개념 요소별로 어떻게 분포하는지 빈도 분석을 실시하였고, 에너지 개념 요소별로 내용 분석을 병행하였다. 그 결과 모든 나라의 교육과정 모두에서 에너지 개념의 중요성을 확인할 수 있었지만, 세부적으로는 강조하고 있는 개념 요소와 개념 요소별 내용에 있어서 상당한 차이를 발견하였다. 그 중 다른 나라와 대비되는 한국 교육과정의 가장 큰 특징은 에너지 개념 요소 중 에너지의 형태와 관련된 성취기준의 빈도가 가장 높다는 점, 특정 물리량에 대응하지 않는 체 포괄적인 의미로 사용되는 에너지 형태를 포함하고 있다는 점, 에너지 전달에 비해 좀 더 어려운 개념 요소인 에너지 전환을 강조하고 있는 점, 에너지 보존의 경우 역학적 상황에만 국한하여 성취기준이 제시되고 있는 점, 에너지 개념과 관련하여 '계'를 도입하지 않고 있는 점 등을 들 수 있다. 이러한 차이가 야기하는 교육과정 개편 상의 쟁점들에 대해서 논의하였다.

Energy as a powerful and unifying concept to understand natural world has been regarded as one of the key concepts of the science curricula in many countries. However, concerning learning and teaching of energy, various difficulties have been reported widely. This study aimed at analyzing and comparing science curricula of Korea, the U.S., England, and Singapore regarding energy to identify the potential issues for energy curriculum in the future. 2015 revised Korean science curriculum, Next Generation Science Standards of the U.S., Science programmes of study of England, and the Science syllabus of Singapore were compared based on six basic elements of the concept of energy: energy form, energy resource, energy transfer, energy transformation, energy conservation, and energy dissipation. Achievement criteria that include energy were extracted from all curricula and categorized into the six elements. The frequency and distribution of the six elements in the four curricula were compared in terms of school levels and disciplinary areas. Contents of six energy elements were also compared. Though all curricula emphasized energy as a key science concept, we found many differences in the degree of emphasis of basic ideas and specific contents and approaches. Korean curriculum is characterized by 1) high frequency concerning energy form among the elements of the concept of energy, 2) introducing energy forms of unclear meaning, which are not linked with other physical quantities, 3) emphasis on energy conversion in comparison of energy transfer, 4) focusing on mechanical energy conservation instead of more general energy conservation, and 5) absence of the concept of 'system' concerning energy. Issues for energy curriculum development were discussed.

키워드

참고문헌

  1. Arons, A. (1997). Teaching introductory physics. New York: Wiley.
  2. Arons, A. (1999). Development of energy concepts in introductory physics courses. American Journal of Physics, 67(12), 1063.1067. https://doi.org/10.1119/1.19182
  3. Brewe, E. (2011). Energy as a substancelike quantity that flows: Theoretical considerations and pedagogical consequences. Physical Review Special Topics-Physics Education Research, 7(2), 020106. https://doi.org/10.1103/PhysRevSTPER.7.020106
  4. Cheong, Y. W., & Song, J. (2011). Ontological analysis of the concepts of energy and energy conservation and its educational implications. New Physics: Sae Mulli, 61(9), 850-861. https://doi.org/10.3938/NPSM.61.850
  5. Coopersmith, J. (2015). Energy, the subtle concept: the discovery of Feynman's blocks from Leibniz to Einstein. Oxford University Press, USA.
  6. CPDD [Curriculum Planning & Development Division]. (2013). Science syllabus primary 2014. Singapore: CPDD Ministry of Education.
  7. CPDD [Curriculum Planning & Development Division]. (2012). Science syllabus lower secondary Express course Normal (Academic) Course. Singapore: CPDD Ministry of Education.
  8. CPDD [Curriculum Planning & Development Division]. (2013). Science syllabus lower and upper secondary Normal (technical) course. Singapore: CPDD Ministry of Education.
  9. CPDD [Curriculum Planning & Development Division]. (2016). Biology syllabus pre-university higher 2 syllabus 9744. Singapore: CPDD Ministry of Education.
  10. CPDD [Curriculum Planning & Development Division]. (2016). Chemistry syllabus pre-university higher 2 syllabus 9729. Singapore: CPDD Ministry of Education.
  11. CPDD [Curriculum Planning & Development Division]. (2016). Physics syllabus pre-university higher 2 syllabus 9749. Singapore: CPDD Ministry of Education.
  12. Department for Education (2013) National curriculum in England.: Science programmes of study - key stages 1 and 2. England: Department for education.
  13. Department for Education (2013) National curriculum in England.: Science programmes of study - key stage 3. England: Department for education.
  14. Department for Education (2014) National curriculum in England.: Science programmes of study - key stage 4. England: Department for education.
  15. Driver, R., & Millar, R. (Eds.). (1986). Energy matters. Leeds: University of Leeds.
  16. Duit, R. (1986). In search of an energy concept. In R. Driver & R. Millar (Eds.), Energy matters (pp. 67-102). Leeds: Centre for Studies in Science and Mathematics Education, University of Leeds.
  17. Harrer, B. W., Flood, V. J., & Wittmann, M. C. (2013). Productive resources in students' ideas about energy: An alternative analysis of Watts' original interview transcripts. Physical Review Special Topics-Physics Education Research, 9(2), 023101. https://doi.org/10.1103/PhysRevSTPER.9.023101
  18. Jewett Jr, J. W. (2008a). Energy and the confused student II: Systems. The Physics Teacher, 46(2), 81-86. https://doi.org/10.1119/1.2834527
  19. Jewett Jr, J. W. (2008b). Energy and the confused student IV: A global approach to energy. The Physics Teacher, 46(4), 210-217. https://doi.org/10.1119/1.2895670
  20. Kaper, W. H., & Goedhart, M. J. (2002). 'Forms of Energy', an intermediary language on the road to thermodynamics? Part I. International Journal of Science Education, 24(1), 81-95. https://doi.org/10.1080/09500690110049114
  21. Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Sage.
  22. Lancor, R. (2014). Using metaphor theory to examine conceptions of energy in biology, chemistry, and physics. Science & Education, 23(6), 1245-1267. https://doi.org/10.1007/s11191-012-9535-8
  23. Lee, M.-H., Son, Y.-A., Pottenger III F. M., Choi, D.-H. (2001). The strategies for integrated science teaching of "energy" applying knowledge, social problem, and individual interest centered approaches. Journal of the Korean Association for Science Education, 21(2), 342-356.
  24. Lee, H. S., & Liu, O. L. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94(4), 665-688. https://doi.org/10.1002/sce.20382
  25. Manzon, M. (2014). Comparing places. In M. Bray, B. Adamson, & M. Mason (Eds.), Comparative education research: Approaches and methods (pp. 97-137). Hong Kong: Springer & Comparative Education Research Centre, The University of Hong Kong.
  26. Millar, R. (2014). Towards a research-informed teaching sequence for energy. In Teaching and Learning of Energy in K-12 Education (pp. 187-206). Springer International Publishing.
  27. Ministry of Education, Korea. (2015). Science curriculum. Seoul, Korea: Ministry of Education.
  28. Mullis, I. V., Martin, M. O., Ruddock, G. J., O'Sullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands.
  29. National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  30. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Committee on Science Learning, Kindergarten through eighth grade (R. A. Duschl, H. A. Schweingruber, & A. W. Shouse, Eds.). Washington DC: The National Academies Press.
  31. Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162-188. https://doi.org/10.1002/tea.21061
  32. NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press.
  33. Papadouris, N., & Constantinou, C. P. (2014). Distinctive features and underlying rationale of a philosophically-informed approach for energy teaching. In Teaching and Learning of Energy in K-12 Education (pp. 207-221). Springer International Publishing.
  34. Papadouris, N., Constantinou, C. P., & Kyratsi, T. (2008). Students' use of the energy model to account for changes in physical systems. Journal of Research in science teaching, 45(4), 444-469. https://doi.org/10.1002/tea.20235
  35. Scherr, R. E., Close, H. G., McKagan, S. B., & Vokos, S. (2012). Representing energy. I. Representing a substance ontology for energy. Physical Review Special Topics-Physics Education Research, 8(2), 020114. https://doi.org/10.1103/PhysRevSTPER.8.020114
  36. Schleicher, A., Zimmer, K., Evans, J., & Clements, N. (2009). PISA 2009 assessment framework: Key competencies in reading, mathematics and science. OECD Publishing (NJ1).
  37. Smith, C. (1998). The science of energy: A cultural history of energy physics in Victorian Britain. University of Chicago Press.
  38. Solomon, J. (1992). Getting to know about energy: In school and in society. London: Falmer Press.
  39. Warren, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295-297. https://doi.org/10.1080/0140528820040308
  40. Watts, M. (1983). Some alternative views of energy. Physics Education, 18(5), 213-217. https://doi.org/10.1088/0031-9120/18/5/307

피인용 문헌

  1. 에너지에 대한 초등학생들의 개념 탐색 vol.43, pp.3, 2019, https://doi.org/10.21796/jse.2019.43.3.284