DOI QR코드

DOI QR Code

White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

  • 투고 : 2016.11.05
  • 심사 : 2017.03.07
  • 발행 : 2017.08.31

초록

Objectives: This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA), which was WMTA combined with calcium chloride dihydrate ($CaCl_2{\cdot}2H_2O$), compared to that of WMTA. Materials and Methods: Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD), respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs) using methyl-thiazoldiphenyltetrazolium (MTT) assay and under SEM after 24 and 72 hours, respectively. Results: Results showed that the addition of $CaCl_2{\cdot}2H_2O$ to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05). HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions: The addition of $CaCl_2{\cdot}2H_2O$ to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects.

키워드

참고문헌

  1. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993;19:591-595. https://doi.org/10.1016/S0099-2399(06)80271-2
  2. Al-Rabeah E, Perinpanayagam H, MacFarland D. Human alveolar bone cells interact with ProRoot and tooth-colored MTA. J Endod 2006;32:872-875. https://doi.org/10.1016/j.joen.2006.03.019
  3. Nair PN, Duncan HF, Pitt Ford TR, Luder HU. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: a randomized controlled trial. Int Endod J 2008;41:128-150.
  4. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod 2010;36:190-202. https://doi.org/10.1016/j.joen.2009.09.010
  5. Hakki SS, Bozkurt SB, Ozcopur B, Purali N, Belli S. Periodontal ligament fibroblast response to root perforations restored with different materials: a laboratory study. Int Endod J 2012;45:240-248. https://doi.org/10.1111/j.1365-2591.2011.01968.x
  6. Wiltbank KB, Schwartz SA, Schindler WG. Effect of selected accelerants on the physical properties of mineral trioxide aggregate and Portland cement. J Endod 2007;33:1235-1238. https://doi.org/10.1016/j.joen.2007.06.016
  7. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010;36:400-413. https://doi.org/10.1016/j.joen.2009.09.009
  8. Lee ES. A new mineral trioxide aggregate root-end filling technique. J Endod 2000;26:764-765. https://doi.org/10.1097/00004770-200012000-00027
  9. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006;32:569-572. https://doi.org/10.1016/j.joen.2005.08.006
  10. Huang TH, Shie MY, Kao CT, Ding SJ. The effect of setting accelerator on properties of mineral trioxide aggregate. J Endod 2008;34:590-593. https://doi.org/10.1016/j.joen.2008.02.002
  11. Lee BN, Hwang YC, Jang JH, Chang HS, Hwang IN, Yang SY, Park YJ, Son HH, Oh WM. Improvement of the properties of mineral trioxide aggregate by mixing with hydration accelerators. J Endod 2011;37:1433-1436. https://doi.org/10.1016/j.joen.2011.06.013
  12. Ahmed HMA, Saini R, Rahman IA, Saini D. Effect of bee products on the setting properties of mineral trioxide aggregate mixed with calcium chloride dihydrate. A preliminary study. J ApiProduct ApiMedical Sci 2011;3:123-127. https://doi.org/10.3896/IBRA.4.03.3.03
  13. Ber BS, Hatton JF, Stewart GP. Chemical modification of proroot mta to improve handling characteristics and decrease setting time. J Endod 2007;33:1231-1234. https://doi.org/10.1016/j.joen.2007.06.012
  14. Lee BN, Kim HJ, Chang HS, Hwang IN, Oh WM, Kim JW, Koh JT, Min KS, Choi CH, Hwang YC. Effects of mineral trioxide aggregate mixed with hydration accelerators on osteoblastic differentiation. J Endod 2014;40:2019-2023. https://doi.org/10.1016/j.joen.2014.08.014
  15. Zapf AM, Chedella SC, Berzins DW. Effect of additives on mineral trioxide aggregate setting reaction product formation. J Endod 2015;41:88-91.
  16. Prasad A, Pushpa S, Arunagiri D, Sawhny A, Misra A, Sujatha R. A comparative evaluation of the effect of various additives on selected physical properties of white mineral trioxide aggregate. J Conserv Dent 2015;18:237-241. https://doi.org/10.4103/0972-0707.157263
  17. Kulan P, Karabiyik O, Kose GT, Kargul B. Biocompatibility of accelerated mineral trioxide aggregate on stem cells derived from human dental pulp. J Endod 2016;42:276-279. https://doi.org/10.1016/j.joen.2015.10.015
  18. Antunes Bortoluzzi E, Juarez Broon N, Antonio Hungaro Duarte M, de Oliveira Demarchi AC, Monteiro Bramante C. The use of a setting accelerator and its effect on pH and calcium ion release of mineral trioxide aggregate and white Portland cement. J Endod 2006;32:1194-1197. https://doi.org/10.1016/j.joen.2006.07.018
  19. Bortoluzzi EA, Broon NJ, Bramante CM, Felippe WT, Tanomaru Filho M, Esberard RM. The influence of calcium chloride on the setting time, solubility, disintegration, and pH of mineral trioxide aggregate and white Portland cement with a radiopacifier. J Endod 2009;35:550-554. https://doi.org/10.1016/j.joen.2008.12.018
  20. Bortoluzzi EA, Broon NJ, Bramante CM, Consolaro A, Garcia RB, de Moraes IG, Bernadineli N. Mineral trioxide aggregate with or without calcium chloride in pulpotomy. J Endod 2008;34:172-175. https://doi.org/10.1016/j.joen.2007.09.015
  21. Jafarnia B, Jiang J, He J, Wang YH, Safavi KE, Zhu Q. Evaluation of cytotoxicity of MTA employing various additives. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:739-744. https://doi.org/10.1016/j.tripleo.2009.01.009
  22. Kang JY, Lee BN, Son HJ, Koh JT, Kang SS, Son HH, Chang HS, Hwang IN, Hwang YC, Oh WM. Biocompatibility of mineral trioxide aggregate mixed with hydration accelerators. J Endod 2013;39:497-500. https://doi.org/10.1016/j.joen.2012.11.037
  23. Ahmed HMA, Luddin N, Kannan TP, Mokhtar KI, Ahmad A. Chemical analysis and biological properties of two different formulations of white Portland cements. Scanning 2016;38:303-316. https://doi.org/10.1002/sca.21270
  24. Ong RM, Luddin N, Ahmed HMA, Omar NS. Cytotoxicity of accelerated white MTA and Malaysian white Portland cement on stem cells from human exfoliated deciduous teeth (SHED): an in vitro study. Singapore Dent J 2012;33:19-23. https://doi.org/10.1016/j.sdj.2012.11.001
  25. Camilleri J. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry. Int Endod J 2008;41:791-799. https://doi.org/10.1111/j.1365-2591.2008.01439.x
  26. Hwang YC, Lee SH, Hwang IN, Kang IC, Kim MS, Kim SH, Son HH, Oh WM. Chemical composition, radiopacity, and biocompatibility of Portland cement with bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e96-e102. https://doi.org/10.1016/j.tripleo.2008.11.015
  27. Ahmed HMA, Omar NS, Luddin N, Saini R, Saini D. Cytotoxicity evaluation of a new fast set highly viscous conventional glass ionomer cement with L929 fibroblast cell line. J Conserv Dent 2011;14:406-408. https://doi.org/10.4103/0972-0707.87212
  28. Zhang W, Li Z, Peng B. Ex vivo cytotoxicity of a new calcium silicate-based canal filling material. Int Endod J 2010;43:769-774. https://doi.org/10.1111/j.1365-2591.2010.01733.x
  29. Ahmed HMA, Luddin N, Kannan TP, Mokhtar KI, Ahmad A. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations. J Endod 2014;40:1517-1523. https://doi.org/10.1016/j.joen.2014.06.013
  30. Traetteberg A, Ramachandran VS, Grattan-Bellew PE. A study of the microstructure and hydration characteristics of tricalcium silicate in the presence of calcium chloride. Cem Concr Res 1974;4:203-221. https://doi.org/10.1016/0008-8846(74)90133-1
  31. Wang X, Sun H, Chang J. Characterization of $Ca_3SiO_5/CaCl_2$ composite cement for dental application. Dent Mater 2008;24:74-82. https://doi.org/10.1016/j.dental.2007.02.006
  32. Oliveira MG, Xavier CB, Demarco FF, Pinheiro AL, Costa AT, Pozza DH. Comparative chemical study of MTA and Portland cements. Braz Dent J 2007;18:3-7. https://doi.org/10.1590/S0103-64402007000100002
  33. Asgary S, Parirokh M, Eghbal MJ, Brink F. A comparative study of white mineral trioxide aggregate and white Portland cements using X-ray microanalysis. Aust Endod J 2004;30:89-92. https://doi.org/10.1111/j.1747-4477.2004.tb00416.x
  34. Dammaschke T, Gerth HU, Zuchner H, Schafer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005;21:731-738. https://doi.org/10.1016/j.dental.2005.01.019
  35. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 2005;21:297-303. https://doi.org/10.1016/j.dental.2004.05.010
  36. Song JS, Mante FK, Romanow WJ, Kim S. Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA-Angelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:809-815. https://doi.org/10.1016/j.tripleo.2005.11.034
  37. Belio-Reyes IA, Bucio L, Cruz-Chavez E. Phase composition of ProRoot mineral trioxide aggregate by X-ray powder diffraction. J Endod 2009;35:875-878. https://doi.org/10.1016/j.joen.2009.03.004
  38. Al-Hezaimi K, Al-Shalan TA, Naghshbandi J, Simon JH, Rotstein I. MTA preparations from different origins may vary in their antimicrobial activity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e85-e88. https://doi.org/10.1016/j.tripleo.2009.01.045
  39. Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR. The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J 2005;38:834-842. https://doi.org/10.1111/j.1365-2591.2005.01028.x
  40. Islam I, Chng HK, Yap AU. X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J 2006;39:220-225. https://doi.org/10.1111/j.1365-2591.2006.01077.x
  41. Park JW, Hong SH, Kim JH, Lee SJ, Shin SJ. X-Ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:155-158. https://doi.org/10.1016/j.tripleo.2009.08.039
  42. Taylor HF. Cement chemistry. 2nd ed. London: Thomas Telford Ltd.; 1997. p321-322.
  43. Al-Hiyasat AS, Al-Sa'Eed OR, Darmani H. Quality of cellular attachment to various root-end filling materials. J Appl Oral Sci 2012;20:82-88. https://doi.org/10.1590/S1678-77572012000100015
  44. Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod 2000;26:288-291. https://doi.org/10.1097/00004770-200005000-00010
  45. Watts JD, Holt DM, Beeson TJ, Kirkpatrick TC, Rutledge RE. Effects of pH and mixing agents on the temporal setting of tooth-colored and gray mineral trioxide aggregate. J Endod 2007;33:970-973. https://doi.org/10.1016/j.joen.2007.01.024
  46. Boutsioukis C, Noula G, Lambrianidis T. Ex vivo study of the efficiency of two techniques for the removal of mineral trioxide aggregate used as a root canal filling material. J Endod 2008;34:1239-1242. https://doi.org/10.1016/j.joen.2008.07.018
  47. Belobrov I, Parashos P. Treatment of tooth discoloration after the use of white mineral trioxide aggregate. J Endod 2011;37:1017-1020. https://doi.org/10.1016/j.joen.2011.04.003
  48. Thomson TS, Berry JE, Somerman MJ, Kirkwood KL. Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate. J Endod 2003;29:407-412. https://doi.org/10.1097/00004770-200306000-00007
  49. Zhu Q, Haglund R, Safavi KE, Spangberg LS. Adhesion of human osteoblasts on root-end filling materials. J Endod 2000;26:404-406. https://doi.org/10.1097/00004770-200007000-00006
  50. Ma J, Shen Y, Stojicic S, Haapasalo M. Biocompatibility of two novel root repair materials. J Endod 2011;37:793-798. https://doi.org/10.1016/j.joen.2011.02.029
  51. Asgary S, Moosavi SH, Yadegari Z, Shahriari S. Cytotoxic effect of MTA and CEM cement in human gingival fibroblast cells. Scanning electronic microscope evaluation. N Y State Dent J 2012;78:51-54.
  52. Trichaiyapon V, Torrungruang K, Panitvisai P. Cytotoxicity of flowable resin composite on cultured human periodontal ligament cells compared with mineral trioxide aggregate. J Investig Clin Dent 2012;3:215-220. https://doi.org/10.1111/j.2041-1626.2012.00125.x

피인용 문헌

  1. Biological effects of acid-eroded MTA Repair HP and ProRoot MTA on human periodontal ligament stem cells pp.1436-3771, 2019, https://doi.org/10.1007/s00784-019-02822-2
  2. Comparative Cytocompatibility and Mineralization Potential of Bio-C Sealer and TotalFill BC Sealer vol.12, pp.19, 2019, https://doi.org/10.3390/ma12193087
  3. Chemical modification of MTA and CEM cement to decrease setting time and improve bioactivity properties by adding alkaline salts vol.14, pp.1, 2017, https://doi.org/10.34172/joddd.2020.001
  4. Chemical modification of MTA and CEM cement to decrease setting time and improve bioactivity properties by adding alkaline salts vol.14, pp.1, 2017, https://doi.org/10.34172/joddd.2020.001
  5. Chitosan-Based Accelerated Portland Cement Promotes Dentinogenic/Osteogenic Differentiation and Mineralization Activity of SHED vol.13, pp.19, 2021, https://doi.org/10.3390/polym13193358