References
- H. Nishiyama, M. Ito and N. Kato, "Relay-bysmartphone: Realizing Multihop Device-to-device Communications," IEEE Commun. Mag., vol. 52, no. 4, pp. 56-65, Apr. 2014. https://doi.org/10.1109/MCOM.2014.6807947
- M. Kobayashi, "Experience of Infrastructure Damage Caused by the Great East Japan Earthquake and Countermeasures against Future Disasters," IEEE Commun. Mag., vol. 52, no. 3, pp. 23-29, Mar. 2014. https://doi.org/10.1109/MCOM.2014.6766080
- T. Sakano, Z. Fadlullah, T. Ngo, H. Nishiyama, M. Nakazawa, F. Adachi, N. Kato, A. Takahara, T. Kumagai, H. Kasahara, and S. Kurihara, "Disaster-resilient Networking: a New Vision Based on Movable and Deployable Resource Units," IEEE Network, vol. 27, no. 4, pp. 40-46, Aug. 2013. https://doi.org/10.1109/MNET.2013.6574664
- D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, "Mobile Augmented Reality Survey: From Where We Are to Where We Go," IEEE Access, vol. 5, pp. 6917-6950, 2017. https://doi.org/10.1109/ACCESS.2017.2698164
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature, vol. 521, pp. 436-444, May. 2015. https://doi.org/10.1038/nature14539
- A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Proc. Neural Information and Processing Systems, 2012. http://papers.nips.cc/paper/4824-imagenet-classificationwith- deep-convolutional-neural-networks
- Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based Learning Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. https://doi.org/10.1109/5.726791
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Proc. IEEE conf. on comp. vision and pattern recognition, pp. 770-778, 2016. https://doi.org/10.1109/CVPR.2016.90
- C. Szegedy, S. Ioffe, V. Vanhoucke, "Inception-v4, Inception-resnet and the Impact of Residual Connections on Learning," arXiv:1602.07261v2, Aug. 2016. https://arxiv.org/abs/1602.07261
- K. Simonyan, A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556v6, Apr. 2015. https://arxiv.org/abs/1409.1556
- D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, "Mobile Agumented Reality Survey : From Where We Are to Where We Go," IEEE Access, vol. 5, pp. 6917-6950, Apr. 2017. https://doi.org/10.1109/ACCESS.2017.2698164
- R. Shea et al., "Location-Based Augmented Reality With Pervasive Smartphone Sensors: Inside and Beyond Pokemon Go!," IEEE Access, vol. 5, pp. 9619-9631, Apr. 2017. https://doi.org/10.1109/ACCESS.2017.2696953
- B. Thomas and C. Sandor, "What Wearable Augmented Reality Can Do for You," IEEE Pervasive Comping, vol. 8, no. 2, pp. 8-11, Jun. 2009. https://doi.org/10.1109/MPRV.2009.38
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," arXiv:1512.00567v3, Dec. 2015. https://arxiv.org/abs/1512.00567
- M. Potter, B. Wyble, C. Hagmann, and E. McCourt, "Detecting Meaning in RSVP at 13 ms per Picture," Attention, Perception, & Psychophysics, vol. 76, no. 2, pp.270-279, 2014. https://doi.org/10.3758/s13414-013-0605-z
- N. Lane and P. Georgiev, "Can Deep Learning Revolutionize Mobile Sensing?," Proc. 16th ACM Int'l. Wksp. Mobile Computing Systems and Applications, pp. 117-122, 2015. https://doi.org/10.1145/2699343.2699349
- D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, "Mobile-Edge Computing Architecture: The role of MEC in the Internet of Things," IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84-91, Oct. 2016. https://doi.org/10.1109/MCE.2016.2590118
Cited by
- 딥러닝 기술이 가지는 보안 문제점에 대한 분석 vol.10, pp.5, 2017, https://doi.org/10.15207/jkcs.2019.10.5.009
- 딥러닝 기반의 구조물 화재 재난 시 최적 대피로 안내 시스템 vol.23, pp.11, 2019, https://doi.org/10.6109/jkiice.2019.23.11.1371