DOI QR코드

DOI QR Code

Deployment of Network Resources for Enhancement of Disaster Response Capabilities with Deep Learning and Augmented Reality

딥러닝 및 증강현실을 이용한 재난대응 역량 강화를 위한 네트워크 자원 확보 방안

  • Shin, Younghwan (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Yun, Jusik (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Seo, Sunho (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Chung, Jong-Moon (School of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2017.07.19
  • Accepted : 2017.07.25
  • Published : 2017.10.31

Abstract

In this paper, a disaster response scheme based on deep learning and augmented reality technology is proposed and a network resource reservation scheme is presented accordingly. The features of deep learning, augmented reality technology and its relevance to the disaster areas are explained. Deep learning technology can be used to accurately recognize disaster situations and to implement related disaster information as augmented reality, and to enhance disaster response capabilities by providing disaster response On-site disaster response agent, ICS (Incident Command System) and MCS (Multi-agency Coordination Systems). In the case of various disasters, the fire situation is focused on and it is proposed that a plan to strengthen disaster response capability effectively by providing fire situation recognition based on deep learning and augmented reality information. Finally, a scheme to secure network resources to utilize the disaster response method of this paper is proposed.

본 논문에서는 재난상황에서 딥러닝과 증강현실 기술을 활용한 재난대응 방안과 그에 따른 네트워크 자원 확보 방안을 제안한다. 딥러닝과 증강현실 기술의 특징과 현황을 파악하고, 재난분야와의 연관성에 관하여 설명한다. 딥러닝 기술을 사용하여 재난 상황을 정확하게 인지하고 관련 재난 정보를 증강현실로 구현하여 재난대응 현장 및 통합지원본부, 재난안전대책본부 등에 제공함으로써 재난대응 역량을 강화할 수 있다. 각종 재난사례 중 화재상황을 중점으로, 딥러닝 기반 화재상황 인식 및 증강현실 정보제공을 통해 효과적으로 재난대응 역량을 강화할 수 있는 방안을 제시한다. 마지막으로, 본 논문의 재난대응 방안을 활용하기 위한 네트워크 자원 확보 기법을 제시한다.

Keywords

References

  1. H. Nishiyama, M. Ito and N. Kato, "Relay-bysmartphone: Realizing Multihop Device-to-device Communications," IEEE Commun. Mag., vol. 52, no. 4, pp. 56-65, Apr. 2014. https://doi.org/10.1109/MCOM.2014.6807947
  2. M. Kobayashi, "Experience of Infrastructure Damage Caused by the Great East Japan Earthquake and Countermeasures against Future Disasters," IEEE Commun. Mag., vol. 52, no. 3, pp. 23-29, Mar. 2014. https://doi.org/10.1109/MCOM.2014.6766080
  3. T. Sakano, Z. Fadlullah, T. Ngo, H. Nishiyama, M. Nakazawa, F. Adachi, N. Kato, A. Takahara, T. Kumagai, H. Kasahara, and S. Kurihara, "Disaster-resilient Networking: a New Vision Based on Movable and Deployable Resource Units," IEEE Network, vol. 27, no. 4, pp. 40-46, Aug. 2013. https://doi.org/10.1109/MNET.2013.6574664
  4. D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, "Mobile Augmented Reality Survey: From Where We Are to Where We Go," IEEE Access, vol. 5, pp. 6917-6950, 2017. https://doi.org/10.1109/ACCESS.2017.2698164
  5. Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature, vol. 521, pp. 436-444, May. 2015. https://doi.org/10.1038/nature14539
  6. A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Proc. Neural Information and Processing Systems, 2012. http://papers.nips.cc/paper/4824-imagenet-classificationwith- deep-convolutional-neural-networks
  7. Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based Learning Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. https://doi.org/10.1109/5.726791
  8. K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Proc. IEEE conf. on comp. vision and pattern recognition, pp. 770-778, 2016. https://doi.org/10.1109/CVPR.2016.90
  9. C. Szegedy, S. Ioffe, V. Vanhoucke, "Inception-v4, Inception-resnet and the Impact of Residual Connections on Learning," arXiv:1602.07261v2, Aug. 2016. https://arxiv.org/abs/1602.07261
  10. K. Simonyan, A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556v6, Apr. 2015. https://arxiv.org/abs/1409.1556
  11. D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, "Mobile Agumented Reality Survey : From Where We Are to Where We Go," IEEE Access, vol. 5, pp. 6917-6950, Apr. 2017. https://doi.org/10.1109/ACCESS.2017.2698164
  12. R. Shea et al., "Location-Based Augmented Reality With Pervasive Smartphone Sensors: Inside and Beyond Pokemon Go!," IEEE Access, vol. 5, pp. 9619-9631, Apr. 2017. https://doi.org/10.1109/ACCESS.2017.2696953
  13. B. Thomas and C. Sandor, "What Wearable Augmented Reality Can Do for You," IEEE Pervasive Comping, vol. 8, no. 2, pp. 8-11, Jun. 2009. https://doi.org/10.1109/MPRV.2009.38
  14. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," arXiv:1512.00567v3, Dec. 2015. https://arxiv.org/abs/1512.00567
  15. M. Potter, B. Wyble, C. Hagmann, and E. McCourt, "Detecting Meaning in RSVP at 13 ms per Picture," Attention, Perception, & Psychophysics, vol. 76, no. 2, pp.270-279, 2014. https://doi.org/10.3758/s13414-013-0605-z
  16. N. Lane and P. Georgiev, "Can Deep Learning Revolutionize Mobile Sensing?," Proc. 16th ACM Int'l. Wksp. Mobile Computing Systems and Applications, pp. 117-122, 2015. https://doi.org/10.1145/2699343.2699349
  17. D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, "Mobile-Edge Computing Architecture: The role of MEC in the Internet of Things," IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84-91, Oct. 2016. https://doi.org/10.1109/MCE.2016.2590118

Cited by

  1. 딥러닝 기술이 가지는 보안 문제점에 대한 분석 vol.10, pp.5, 2017, https://doi.org/10.15207/jkcs.2019.10.5.009
  2. 딥러닝 기반의 구조물 화재 재난 시 최적 대피로 안내 시스템 vol.23, pp.11, 2019, https://doi.org/10.6109/jkiice.2019.23.11.1371