DOI QR코드

DOI QR Code

Method for Structural Vanishing Point Detection Using Orthogonality on Single Image

소실점의 직교성을 이용한 구조적인 소실점 검출 방법

  • Received : 2017.04.07
  • Accepted : 2017.08.17
  • Published : 2017.10.31

Abstract

In this paper, we proposes method of vanishing point detection using orthogonality of vanishing point, under the "Manhattan World" assumption that the structure of the city is mostly grid and vanishing point are orthogonal to each other. The feature that the vanishing point are orthogonal to each other can be useful for inferring the missing point that are not detected among the three vanishing point, and prevent the vanishing point detected close to the other vanishing point. In this paper, we detect Vertical vanishing point through statistical approach and detect Horizontal and Front vanishing point through structural approach. Experimental results show that the proposed method improves the detection accuracy of the vanishing point compared with the existing method.

본 논문은 도심을 촬영한 실내, 실외의 영상은 대부분 직육면체를 이룬다는 "Manhattan World" 가정을 기반으로 한 소실점의 직교성을 이용한 구조적인 소실점 검출 방법을 제안한다. 소실점들이 서로 직교하는 특징은 3개의 소실점 중 검출되지 않은 소실점을 추론하는데 매우 유용하게 사용될 수 있으며 소실점이 근접하여 검출되는 경우를 방지할 수 있다. 본 논문에서는 통계적인 접근을 통해 수직 소실점을 검출하고 구조적인 방법으로 수평, 전방 소실점을 검출하였다. 실험결과에서는 제안된 방법이 기존 방법과 비교하여 소실점 검출 정확도가 향상됨을 보인다.

Keywords

References

  1. Coughlan, James M., and Alan L. Yuille. "Manhattan world: Compass direction from a single image by bayesian inference." Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on. Vol. 2. IEEE, 1999, pp. 941- 947. https://doi.org/10.1109/ICCV.1999.790349
  2. Hedau, Varsha, Derek Hoiem, and David Forsyth. "Recovering the spatial layout of cluttered rooms." Computer vision, 2009 IEEE 12th international conference on. IEEE, 2009, pp.1849-1856. https://doi.org/10.1109/ICCV.2009.5459411
  3. Hoiem, Derek, Alexei A. Efros, and Martial Hebert. "Recovering surface layout from an image." International Journal of Computer Vision 75.1, 2007, pp. 151-172. https://link.springer.com/article/10.1007/s11263-006-0031-y
  4. Lee, David C., Martial Hebert, and Takeo Kanade. "Geometric reasoning for single image structure recovery." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp 2136-2143. https://doi.org/10.1109/CVPR.2009.5206872
  5. Ramalingam, Srikumar, et al. "Manhattan junction catalogue for spatial reasoning of indoor scenes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, pp. 3065- 3072. https://doi.org/10.1109/CVPR.2013.394
  6. Gupta, Abhinav, et al. "Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces." Advances in neural information processing systems. 2010, pp. 1288-1296. http://papers.nips.cc/paper/4120-estimating-spatial-lay out-of-rooms-using-volumetric-reasoning-about-object s-and-surfaces
  7. Del Pero, Luca, et al. "Bayesian geometric modeling of indoor scenes." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp.2719-2726. https://doi.org/10.1109/CVPR.2012.6247994
  8. Wang, Huayan, Stephen Gould, and Daphne Roller. "Discriminative learning with latent variables for cluttered indoor scene understanding." Communications of the ACM 56.4, 2013, pp. 92-99. https://doi.org/10.1145/2436256.2436276
  9. Kosecka, Jana, and Wei Zhang. "Video compass." European conference on computer vision. Springer Berlin Heidelberg, 2002, pp. 476-490. https://link.springer.com/chapter/10.1007/3-540-47979 -1_32
  10. Lutton, Evelyne, Henri Maitre, and Jaime Lopez- Krahe. "Contribution to the determination of vanishing points using Hough transform." IEEE transactions on pattern analysis and machine intelligence 16.4,1994, pp. 430-438. https://doi.org/10.1109/34.277598