DOI QR코드

DOI QR Code

Grid-based Trajectory Cloaking Method for protecting Trajectory privacy in Location-based Services

위치기반서비스에서 개인의 궤적 정보를 보호하기 위한 그리드 기반 궤적 클로킹 기법

  • Youn, Ji-hye (College of Information and Communication Engineering, Wonkwang University) ;
  • Song, Doo-hee (College of Information and Communication Engineering, Wonkwang University) ;
  • Cai, Tian-yuan (College of Information and Communication Engineering, Wonkwang University) ;
  • Park, Kwang-jin (College of Information and Communication Engineering, Wonkwang University)
  • Received : 2017.04.23
  • Accepted : 2017.08.14
  • Published : 2017.10.31

Abstract

Recently with the rapid development of LBS (Location-based Services) technology, approaches of protecting user's location have gained tremendous attentions. For using LBS, users need to forward their real locations to LBS server. However, if the user sends his/her real location to LBS server, the server will have the all the information about user in LBS. Moreover, if the user opens it to LBS server for a long time, the trajectory of user may be released. In this paper, we propose GTC (Grid-based Trajectory Cloaking) method to address the privacy issue. Different from existing approaches, firstly the GTC method sets the predicting trajectory and divides the map into $2^n*2^n$ grid. After that we will generate cloaking regions according to user's desired privacy level. Finally the user sends them to LBS server randomly. The GTC method can make the cost of process less than sequential trajectory k-anonymity. Because of confusing the departure and destination, LBS server could not know the user's trajectory any more. Thus, we significantly improve the privacy level. evaluation results further verify the effectiveness and efficiency of our GTC method.

최근 LBS(Location-based Services)기술의 발달로 사용자의 위치를 보호하는 연구가 활발히 진행 되고 있다. LBS를 사용하기 위해서는 사용자의 정확한 위치 데이터를 LBS 서버에게 공개해야 한다. 그러나 사용자의 위치를 서버에게 공개하면 서버는 사용자의 위치를 파악할 수 있다. 또한 사용자의 위치 데이터가 지속적으로 서버에게 공개 된다면 질의자의 이동 궤적 또한 노출 될 수 있다. 이를 해결하기 위해 본 논문에서는 GTC (Grid-based Trajectory Cloaking) 기법을 제안한다. GTC 기법은 사용자가 목적지 까지 경로와 사용자가 원하는 프라이버시 레벨 수준 (UPL : User's desired Privacy Level)의 그리드로 분할 한 뒤 클로킹 영역을 설정해 랜덤으로 질의한다. GTC 기법은 순차적인 궤적 k-익명화기법 보다 질의 처리 비용을 줄였고 출발지와 도착지를 알 수 없는 궤적을 생성해 궤적 노출 확률을 줄였다. 실험 결과를 통하여 제안 기법의 우수성을 증명하였다.

Keywords

References

  1. K. Park and P. Valduriez, "A Hierarchical Grid Index (HGI), spatial queries in wireless data broadcasting", Springer Distributed and Parallel Databases, vol. 31, no. 3, pp. 413-446, 2013. https://link.springer.com/article/10.1007/s10619-013-7121-y
  2. D. Song, J. Sim, K. Park, and M. Song, "A Privacy-Preserving Continuous Location Monitoring System for Location-Based Services", International Journal of Distributed Sensor Networks, vol. 2015, pp. 1-10, 2015. http://journals.sagepub.com/doi/abs/10.1155/2015/815 613
  3. D. Song and K. Park, "A partial index for distributed broadcasting in wireless mobile networks", ELSEVIER Information sciences, vol. 348, pp. 142-152, 2016. http://www.sciencedirect.com/science/article/pii/S0020 025516300652 https://doi.org/10.1016/j.ins.2016.02.011
  4. C. Y. Chow and M. F. Mokbel, "Trajectory Privacy in Location-based Services and Data Publication", ACM SIGKDD Explorations Newsletter, vol 13, no. 1, pp. 19-29, 2011. http://dl.acm.org/citation.cfm?id=2031335 https://doi.org/10.1145/2031331.2031335
  5. B. Niu, S. Gao, F. Li, H. Li, and Z. Lu, "Protection of location privacy in continuous LBSs against adversaries with background information", IEEE International Conference on Computing Networking and Communications, 2016. http://ieeexplore.ieee.org/abstract/document/7440649/
  6. D. Song and K. Park, "AMV: A k-anonymization technique minimizing the cloaking region", Journal of Internet Computing and Services, vol. 15, no. 6, pp. 9-14, 2014. http://www.koreascience.or.kr/article/ArticleFullRecor d.jsp?cn=OTJBCD_2014_v15n6_9 https://doi.org/10.7472/jksii.2014.15.6.09
  7. H. Zhao, J. Wan, and Z. Chen "A Novel Dummy- Based KNN Query Anonymization Method in Mobile Services", International Journal of Smart Home, vol. 10, no. 6, pp. 137-154, 2016. http://www.earticle.net/Article.aspx?sn=280498
  8. R. H. Hwang, Y. L. Hsueh, and H. Chung, "A Novel Time-Obfuscated Algorithm for Trajectory Privacy Protection", IEEE Transactions on services computing, vol. 7, no. 2, pp. 126-139, 2014. http://ieeexplore.ieee.org/abstract/document/6682902/ https://doi.org/10.1109/TSC.2013.55
  9. D. Liao, H. Li, G. Sun, and V. Anand, "Protecting User Trajectory in Location-Based Services", IEEE Global Communications Conference, 2015. http://ieeexplore.ieee.org/abstract/document/7417512/
  10. M. E. Nergiz, M. Atzori, Y. Saygin, and B. Guc, "Towards trajectory anonymization : a generalizationbased approach", SIGSPATIAL ACM GIS Transactions on data privacy 2, pp. 47-75, 2008. http://dl.acm.org/citation.cfm?id=1503413
  11. W. C. Hu, S. H. Mousavinezhad, N. Kaabouch, and H. J. Yang, "Privacy-Preserving Spatial Trajectory Prediction", IEEE Conference Wireless Research Collaboration Symposium, pp. 69-73, 2014. http://ieeexplore.ieee.org/abstract/document/6942506/
  12. Z. Huo, X. Meng, H. Hu, and Y. Huang, "You Can Walk Alone Trajectory Privacy-preserving through Significant Stays Protection", Springer International Conference on DASFAA, vol. 7238, pp. 351-366, 2012. https://link.springer.com/chapter/10.1007%2F978-3-64 2-29038-1_26
  13. P. R. Lei, W. C. Peng, I. J. Su, and C. P. Chang, "Dummy-Based Schemes for Protecting Movement Trajectories", Journal of Information Science and Engineering, vol. 28, no. 2, pp. 335-350, 2012. https://ir.nctu.edu.tw/handle/11536/15826
  14. J. Dai and L. Hua, "A method for the trajectory privacy protection based on the segmented fake trajectory under road networks", IEEE International Conference on Information Science and Control Engineering, pp. 13-17, 2015. http://ieeexplore.ieee.org/abstract/document/7120452/
  15. P. P. Lindenberg, B. C. Cheng, and Y. L. Hsueh, "Novel Location Privacy protection strategies for location-based services", IEEE International Conference on Ubiquitous and Future Networks, pp. 866-870, 2015. http://ieeexplore.ieee.org/abstract/document/7182667/
  16. Y. Xin, Z. Q. Xie and J. Yang, "The privacy preserving method for dynamic trajectory releasing based on adaptive clustering", ELSEVIER Information Sciences, vol.378, pp. 131-143, 2017. http://www.sciencedirect.com/science/article/pii/S0020 025516313901 https://doi.org/10.1016/j.ins.2016.10.038