References
- C. Yin, L. Ma, L. Feng, Z. Yin and J. Wang, "A Feature Selection Algorithm towards Efficient Intrusion Detection," International Journal of Multimedia and Ubiquitous Engineering, vol.10, no.11, pp.253-264, 2015.
- S. Y. Ohn, S. D. Chi, and M. Y. Han, "Feature Selection for Classification of Mass Spectrometric Proteomic Data Using Random Forest," The Korea Society For Simulation(KSS), Vol.22, No.4, pp.139-147, 2013. https://doi.org/10.9709/JKSS.2013.22.4.139
- W. Lee and S. Oh, "Efficient Feature Selection Based Near Real-Time Hybrid Intrusion Detection System," KIPS Tr. Comp. and Comm. Sys., vol.5, no.12, pp.471-480, Dec. 2016. https://doi.org/10.3745/KTCCS.2016.5.12.471
- NSL-KDD Dataset [Internet], http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html.
- M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, "A detailed analysis of the kdd cup 99 data set," Computational Intelligence for Security and Defense Applications, CISDA 2009. IEEE Symposium on. IEEE, pp.1-6, 2009.
- L. C. Molina, L. Belanche, and A. Nebot, "Feature selection algorithms: a survey and experimental evaluation," in Data Mining, ICDM 2003. Proceedings. 2002 IEEE International Conference on. IEEE. pp.306-313, 2002.
- G. CHANDRASHEKAR, F. SAHIN, "A survey on feature selection methods," Computers & Electrical Engineering, Vol.40, No.1, pp.16-28, 2014. https://doi.org/10.1016/j.compeleceng.2013.11.024
- L. Breiman, "Random forests," Machine learning, Vol.45, No.1, pp.5-32, 2001. https://doi.org/10.1023/A:1010933404324
- F. Baumann, A. Ehlers, K. Vogt, and B. Rosenhahn, "Cascaded Random Forest for Fast Object Detection," Scandinavian Conference on Image Analysis, Springer Berlin Heidelberg , pp. 131-142, 2013.
- Y. Mishina, R. Murata, Y. Yamauchi, T. Yamashita, and H. Fujiyoshi, "Boosted random forest," IEICE TRANSACTIONS on Information and Systems, Vol.98, No.9, pp.1630-1636, 2015.
- Ian H. Witten, Eibe Frank and Mark A. Hall, "Data Mining. 3rd," Trans. Lee. S. H, acorn, 2014.
- M. A. Hall, "Correlation-based Feature Subset Selection for Machine Learning," doctoral dissertation, The University of Waikato, Canada, 1999.
- H. Liu and R. Setiono, "A probabilistic approach to feature selection-A filter solution," in Proc. of 13th International Conference on Machine Learning, pp.319-327, 1996.
- Kakavand, M., Mustapha, N., Mustapha, A., and Abdullah, M. T., "Effective Dimensionality Reduction of Payload-Based Anomaly Detection in TMAD Model for HTTP Payload," KSII Transactions on Internet and Information Systems, Vol. 10, No.8, pp.3884-3910, 2016 https://doi.org/10.3837/tiis.2016.08.025
- Eid, H. F., Salama, M. A, Hassanien, A. E., and Kim, T. H, "Bi-layer behavioral-based feature selection approach for network intrusion classification," International Conference on Security Technology, Springer Berlin Heidelberg, vol. 259, pp.195-203, 2011.
- S. Mukherjee and N. Sharma, "Intrusion detection using naive Bayes classifier with feature reduction," Procedia Technology, vol.4, pp.119-128, 2012. https://doi.org/10.1016/j.protcy.2012.05.017
- H. F. Eid, A. E. Hassanien, T.-h. Kim, and S. Banerjee, "Linear correlation-based feature selection for network intrusion detection model," Advances in Security of Information and Communication Networks, Springer Berlin Heidelberg, vol.381, pp.240-248, 2013.
- E. de la Hoz, A. Ortiz, J. Ortega, and E. de la Hoz, "Network anomaly classification by support vector classifiers ensemble and non-linear projection techniques," International Conference on Hybrid Artificial Intelligence Systems, Springer Berlin Heidelberg, vol.8073, pp.103-111, 2013.
- Abd-Eldayem and Mohamed M, "A proposed HTTP service based IDS," Egyptian Informatics Journal, vol.15, no.1, 13-24, 2014. https://doi.org/10.1016/j.eij.2014.01.001
- A. Frank and A. Asuncion, "UCI machine learning repository," 2010, http://archive.ics.uci.edu/ml
Cited by
- Intrusion Detection System Modeling Based on Learning from Network Traffic Data vol.12, pp.11, 2018, https://doi.org/10.3837/tiis.2018.11.022
- Dimensionality reduction method for hyperspectral image analysis based on rough set theory vol.53, pp.1, 2020, https://doi.org/10.1080/22797254.2020.1785949
- 캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 vol.26, pp.4, 2017, https://doi.org/10.13088/jiis.2020.26.4.173
- An intelligent flow-based and signature-based IDS for SDNs using ensemble feature selection and a multi-layer machine learning-based classifier vol.40, pp.3, 2017, https://doi.org/10.3233/jifs-200850
- A novel self-learning feature selection approach based on feature attributions vol.183, pp.None, 2017, https://doi.org/10.1016/j.eswa.2021.115219