References
- Y. Wu, J. Lim, and M.-H. Yang, "Object tracking benchmark," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1834-1848, 2015. https://doi.org/10.1109/TPAMI.2014.2388226
- A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, "Visual tracking: an experimental survey," IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 36, no. 7, pp. 1442-1468, 2014. https://doi.org/10.1109/TPAMI.2013.230
- S. Lucey, "Enforcing non-positive weights for stable support vector tracking," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, USA, pp. 1-8, 2008.
- X. Wang, G. Hua, and T. X. Han, "Discriminative Tracking by Metric Learning," in Proc. of the European Conference on Computer Vision (ECCV), Berlin, Heidelberg, 2010.
- Z. Zuo, G. Wang, B. Shuai, L. Zhao, Q. Yang, and X. Jiang, "Learning discriminative and shareable features for scene classification," in Proc. of European Conference on Computer Vision (ECCV), Zurich,Switzerland., pp. 552-568, 2014.
- S. Avidan, "Ensemble Tracking," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 261-271, 2007. https://doi.org/10.1109/TPAMI.2007.35
- B. Babenko, M.-H. Yang, and S. Belongie, "Robust object tracking with online multiple instance learning," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1619-1632, 2011. https://doi.org/10.1109/TPAMI.2010.226
- K. Junseok and L. Kyoung Mu, "Tracking by Sampling Trackers," in Proc. of IEEE International Conference on Computer Vision (ICCV) Barcelona, Spain, pp. 1195-1202, 2011.
- H. Weiming, L. Xi, L. Wenhan, Z. Xiaoqin, S. Maybank, and Z. Zhongfei, "Single and Multiple Object Tracking Using Log-Euclidean Riemannian Subspace and Block-Division Appearance Model," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 12, pp. 2420-2440, 2012. https://doi.org/10.1109/TPAMI.2012.42
- T. Liu, G. Wang, L. Wang, and K. L. Chan, "Visual Tracking via Temporally Smooth Sparse Coding," IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1452-1456, 2015. https://doi.org/10.1109/LSP.2014.2365363
- J. Xing, J. Gao, B. Li, W. Hu, and S. Yan, "Robust object tracking with online multi-lifespan dictionary learning," in Proc. of IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, pp. 665-672, 2013.
- K. Zhang, L. Zhang, and M.-H. Yang, "Real-time compressive tracking," in Proc. of European Conference on Computer Vision, pp. 864-877, 2012.
- S. Hare, A. Saffari, and P. H. Torr, "Struck: Structured output tracking with kernels," in Proc. of IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, pp. 263-270, 2011.
- Z. Kalal, J. Matas, and K. Mikolajczyk, "Pn learning: Bootstrapping binary classifiers by structural constraints," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, pp. 49-56, 2010.
- D. Chen, Z. Yuan, G. Hua, J. Wang, and N. Zheng, "Multi-timescale Collaborative Tracking," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PP, no. 99, pp. 1-1, 2016. https://doi.org/10.1109/TPAMI.2016.2539956
- Z. Chen, Z. Hong, and D. Tao, "An Experimental Survey on Correlation Filter-based Tracking," arXiv preprint arXiv:1509.05520, 2015.
- D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, "Visual object tracking using adaptive correlation filters," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, pp. 2544-2550, 2010.
- J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "Exploiting the circulant structure of tracking-by-detection with kernels," in Proc. of European Conference on Computer Vision (ECCV) ed Florence, Italy: Springer Berlin Heidelberg, pp. 702-715, 2012.
- M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer, "Adaptive color attributes for real-time visual tracking," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, pp. 1090-1097, 2014.
- Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark," in Proc. of IEEE Conference on Computer vision and pattern recognition (CVPR) Portland, OR, pp. 2411-2418, 2013.
- L. Cehovin, M. Kristan, and A. Leonardis, "An adaptive coupled-layer visual model for robust visual tracking," in Proc. of IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, pp. 1363-1370, 2011.
- D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, "Incremental Learning for Robust Visual Tracking," International Journal of Computer Vision, vol. 77, no. 1-3, pp. 125-141, 2008/05/01 2008. https://doi.org/10.1007/s11263-007-0075-7
- G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, "Part-based multiple-person tracking with partial occlusion handling," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Rhode Island, pp. 1815-1821, 2012.
- B. Yang and R. Nevatia, "Online Learned Discriminative Part-Based Appearance Models for Multi-human Tracking," in Proc. of European Conference on Computer Vision (ECCV) A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds., ed Florence, Heidelberg: Springer Berlin Heidelberg, pp. 484-498, 2012.
- X. Jia, H. Lu, and M.-H. Yang, "Visual tracking via adaptive structural local sparse appearance model," in Proc. of IEEE Conference on Computer vision and pattern recognition (CVPR), Providence, RI, pp. 1822-1829, 2012.
- T. Liu, G. Wang, and Q. Yang, "Real-time part-based visual tracking via adaptive correlation filters," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, Massachusetts, pp. 4902-4912, 2015.
- Y. Li, J. Zhu, and S. C. Hoi, "Reliable patch trackers: Robust visual tracking by exploiting reliable patches," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, Massachusetts, pp. 353-361, 2015.
- M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking," IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, 2002. https://doi.org/10.1109/78.978374
- Y. Li and J. Zhu, "A scale adaptive kernel correlation filter tracker with feature integration," in Proc. of European Conference on Computer Vision (ECCV), Zurich, pp. 254-265, 2014.
- M. Danelljan, G. Hager, F. Khan, and M. Felsberg, "Accurate scale estimation for robust visual tracking," in Proc. of British Machine Vision Conference (BMVC) Nottingham, September 1-5, 2014.
- Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and D. Tao, "Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, Massachusetts, pp. 749-758, 2015.
- C. Ma, X. Yang, C. Zhang, and M.-H. Yang, "Long-term correlation tracking," in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, Massachusetts, pp. 5388-5396, 2015.
- K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang, "Fast visual tracking via dense spatio-temporal context learning," in Proc. of European Conference on Computer Vision, Zurich, pp. 127-141, 2014.
- J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "High-Speed Tracking with Kernelized Correlation Filters," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583-596, 2015. https://doi.org/10.1109/TPAMI.2014.2345390
- P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, "Object detection with discriminatively trained part-based models," IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 9, pp. 1627-1645, 2010. https://doi.org/10.1109/TPAMI.2009.167
- R. Rifkin, G. Yeo, and T. Poggio, "Regularized least-squares classification," Nato Science Series Sub Series III Computer and Systems Sciences, vol. 190, pp. 131-154, 2003.
- B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond: MIT press, 2002.
- Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-Learning-Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1409-1422, 2012. https://doi.org/10.1109/TPAMI.2011.239
- A. Adam, E. Rivlin, and I. Shimshoni, "Robust fragments-based tracking using the integral histogram," in Proc. of IEEE Conference on Computer vision and pattern recognition (CVPR), New York, NY, USA., pp. 798-805, 2006.
- K. Zhang, Q. Liu, Y. Wu, and M. H. Yang, "Robust Visual Tracking via Convolutional Networks Without Training," IEEE Transactions on Image Processing, vol. 25, no. 4, pp. 1779-1792, 2016. https://doi.org/10.1109/TIP.2016.2531283