DOI QR코드

DOI QR Code

화재시 구조강도에 대한 신뢰성 평가방법의 정립

Establishment of Fire Reliability Assessment Method for Structural Strength

  • 박창규 (전주비전대학교 조선해양과)
  • 투고 : 2017.09.01
  • 심사 : 2017.10.13
  • 발행 : 2017.10.31

초록

본 논문에서는 해상 구조물들의 화재시 안전성 평가에 대한 연구의 일환으로써 기본적인 구조강도 부재들의 화재시 거동 및 파괴확률을 구해 보았다. 화재에서의 안전성 평가는 부재의 Fire resistance와 화염에 의한 열하중인 Fire severity를 비교하여 이루어질 수 있다고 가정하였다. Fire severity는 육상 건축물에 대한 화재안전 규정인 Eurocode 1의 표준화염 온도변화 곡선과 부재로의 열전달 방정식을 사용하여 부재의 최대온도를 구하게 되며, Fire resistance는 단순 부재의 경우, 간략식과 코드의 활용으로 해결할 수 있지만, FPSO 와 해상 구조물의 복잡성을 고려하여 상용 구조해석 프로그램의 활용을 통하여 탄소성해석 및 대변형등을 고려한 보다 실용적인 부재의 구조강도를 해석하여 주어진 파괴모드에 대한 한계 온도를 구하여 최대온도와 비교하였다. 더불어, Fire resistance 측면에서의 두 접근방식의 비교를 통해서 두 방식의 등가적 성향을 확인하였다. 여기서 Strength, Serviceability, Stability의 세 가지 측면에서 First Hinge, Large Deflection, Buckling의 세 가지 파괴모드를 상정하고 각각에 대한 파괴여부를 확인하였고, 이렇게 구해지는 Fire severity와 Fire resistance의 식에 AFOSM 방법을 적용하여 최종적으로 부재의 파괴확률을 구하는 방식을 통해, 단순 부재인 Beam 및 Plate 예제에 적용하여 구조물의 화재시 거동 및 각 파괴모드에 대한 파괴여부를 구하였다.

This paper describes the behavior and failure probability of the basic structural members in a fire for the fire safety assessment of offshore structures. A fire safety assessment can be accomplished by comparing the fire resistance of the members with the fire severity of the heat load due to fire. The fire severity is represented as the maximum temperature of the members using the Eurocode 1 standard fire curve and heat transfer equation. On the other hand, the fire resistance is the limiting temperature calculated by a simplified formula in the case of simple structural members. Considering the complexity of FPSOs and offshore structures, a general-purpose structural analysis program should be used and the limiting temperature obtained by analyzing the structural strength of the members through an elasto-plastic analysis with a large deflection, and compared with the maximum temperature. Also, the equality of these two methods of evaluating the fire resistance was confirmed by comparing them. Following three criteria, the strength, serviceability and stability, three failure modes, namely the first failure of a hinge, large deflection and buckling, were chosen. The failure temperature was verified for each failure mode. using the AFOSM method in the equation of the fire severity and fire resistance, thereby giving the failure probability of the member. By applying these processes to the example of a beam and plate, the behavior of the structure and failure (temperature?) of each failure mode can be determined.

키워드

참고문헌

  1. Martin Muncer, "Analysis of accident statistics for floating monohull and fixed installation", Health and Safety Executive Research Report, 2003.
  2. ISO 834, Fire-resistance Tests: Elements of Building Construction, International Organization for Standrdization, Geneva, Switzerland, 1999.
  3. ASTM E119, Standard Test Methods for Fire Tests of Building Construction and Materials, ASTM International, West Conshohocken, PA, 2016.
  4. Eurocode 1, Basis of Desitn and Actions on Structures, EUROCODES, 1992.
  5. Andrew H. Buchanan, "Structural Design for Fire Safety", John Wiley & Sons, 2001.
  6. SNZ, Steel Structures Standard: Part 1and 2, including 2007 amendment, Standards New Zealand, Wellington, 1997.
  7. Silwood Park, "Methodologies and Available Tools for the Design/Analysis of Steel Components at Elevated Temperatures", Health and Safety Executive, 2002.
  8. Feasey, R. and Buchanan, A.H.,"Post-flashover fires for structural design", Fire Safety Journal, vol. 37, no. 1, pp. 83-105, 2002. DOI: https://doi.org/10.1016/S0379-7112(01)00026-1
  9. John Kee Sing Wong, "Reliability of Structural Fire Design", School of Engineering, University of Canterbury, 1999.
  10. Lee, Jae-Ohk; Rho, Jun-Bumn, "A Study on the Design Sea-state Determination Using the IFOSM Method", Journal of the Society of Naval Architects of Korea ,vol. 47, no. 3, pp.447-453, 2010. DOI: https://doi.org/10.3744/SNAK.2010.47.3.447
  11. A. M. Hasofer, N.C. Lind, "Exact and invariant second-moment code format", J. of the Engineering Mechanics Division, ASCE, vol. 100, no 1, pp.111-121, 1974.
  12. Y. S. Yang, Y. S. Suh, J. O. Lee, "Structural Reliability Engineering", Seoul National University Press, 1999.
  13. Jenny Seputro, "Effect of Support Conditions on Steel Beams Exposed of Fire", Department of Civil Engineering, University of Canterbury, 2001.
  14. Tae-Jun Cho, Lee-Hyeon Kim, and Hyo-Nam Cho, "Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures", Journal of the Korea Concrete Institute, vol. 20, no. 1, pp. 13-22, 2008. DOI: https://doi.org/10.4334/JKCI.2008.20.1.013