PET/CT 감쇠보정시 다양한 CT Kernel 적용에 따른 유용성 평가

The evaluate the usefulness of various CT kernel applications by PET/CT attenuation correction

  • 이재영 (서울대학교병원 핵의학과) ;
  • 성용준 (서울대학교병원 핵의학과) ;
  • 윤석환 (서울대학교병원 핵의학과) ;
  • 박찬록 (서울대학교병원 핵의학과) ;
  • 이홍재 (서울대학교병원 핵의학과) ;
  • 노경운 (서울대학교병원 핵의학과)
  • Lee, Jae-Young (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Seong, Yong-Jun (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Yoon, Seok-Hwan (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Park, Chan-Rok (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Lee, Hong-Jae (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Noh, Kyung-Wun (Department of Nuclear Medicine, Seoul National University Hospital)
  • 투고 : 2017.09.29
  • 심사 : 2017.10.20
  • 발행 : 2017.11.11

초록

PET/CT 영상 재구성시 감쇠보정맵을 사용하여 영상재구성에 적용한다. 감쇠보정 맵의 CT parameter을 변경하여 PET/CT 영상 재구성 할 때 적용하여 SUVmax에 어떤 영향을 미치는지 비교 평가해보고자 한다. 장비는 Biograph mCT 64를 사용하였고 Phantom은 NEMA IEC Body Phantom을 사용하였다. 실험을 위해 환자는 2017년 2월에서 3월까지 본원 PET/CT 검사를 시행한 환자 20명을 대상으로 Lung, Liver, Bone에 관심영역을 선택하여 기존 08f AC, 45f medium, 80f ultra sharp 방식의 CT kernel을 적용한 감쇠보정맵을 사용하여 PET/CT 영상 재구성에 도입 후 방사능 농도(kBq/mL), SUVmax, SD(standard deviation) 변화 유무를 평가하였다. Phantom 방사능 농도 측정 결과 B08f AC 대비 B45f 0.96%, B80f 6.58% 증가하였고 B08f AC 대비 B45f 0.86%, B80f 6.54%각각 증가하였고, SD의 경우 B08f AC 대비 B45f 1.27%, B80f 6.96% 증가하였다. 환자에서 부위별 SUV는 Lung에서 B08f AC 대비 B45f 1.6%, B80f 6.6%, Liver에서 B08f AC 대비 B45f 0.7%, B80f 4.7%, Bone에서 B08f AC 대비 B45f 1.3%, B80f 6.2% 증가를 보였다. 부위별 SD는 Lung에서 B08f AC 대비 B45f 6.2%, B80f 15.4%, Liver에서 B08f AC 대비 B45f 2.1%, B80f 11%, Bone에서 B08f AC 대비 B45f 를 사용할 때 2.3%, B80f 14.7% 증가를 보였다. CT Kernel변화에 따라 sharpness noise와 영상의 질은 변화를 보였으나 SUVmax와 SD는 통계적으로 유의한 차이가 없었다.(P>.05). 핵의학 영상은 정량적인 평가가 중요하다 따라서 부위에 따라 CT kernel이 적절하게 조절되고 noise level이 낮은 감쇠보정 맵을 사용하여 PET/CT 재구성시에 적용하여 정량적 평가에 오류를 줄이는 것이 중요하다고 사료되므로 따라서 같은 부위라 할지라도 sharpness noise가 인위적으로 증가된 kernel을 사용하는 것보다 noise가 낮은 kernel을 사용하는 것이 SD편차를 줄이고 정량적인 평가에 오류를 적게 하여 정확한 진단과 SUV 측정에 유용할 것으로 사료된다.

Purpose Recently PET/CT image's attenuation correction is used CTAC(Computed Tomgraphy Attenuation Correction). it can quantitative evaluation by SUV(Standard Uptake Value). This study's purpose is to evaluate SUV and to find proper CT kernel using CTAC with applied various CT kernel to PET/CT construction. Materials and Methods Biograph mCT 64 was used for the equipment. We were performed on 20 patients who had examed at our hospital from february through March 2017. Using NEMA IEC Body Phantom, The data was reconstructed PET/CT images with CTAC appiled various CT kernel. ANOVA was used to evaluated the significant difference in the result. Results The result of measuring the radioactivity concentration of Phantom was B45F 96% and B80F 6.58% against B08F CT kernel, each respectively. the SUVmax increased to B45F 0.86% and B80F 6.54% against B08F CT kernel, In case of patient's parts data, the Lung SUVmax increased to B45F 1.6% and B80F 6.6%, Liver SUVmax increased to B45F 0.7% and B80F 4.7%, and Bone SUVmax increased to B45F 1.3% and B80F 6.2%, respectively. As for parts of patient's about Standard Deviation(SD), the Lung SD increased to B45F 4.2% and B80F 15.4%, Liver SD increased to B45F 2.1% and B80F 11%, and Bone SD increased to B45F 2.3% and B80F 14.7%, respectively. There was no significant difference discovered in three CT kernel (P >.05). Conclusion When using increased noise CT kernel for PET/CT reconstruction, It tends to change both SUVmax and SD in ROI(region of interest), Due to the increase the CT kernel number, Sharp noise increased in ROI. so SUVmax and SD were highly measured, but there was no statistically significant difference. Therefore Using CT kernel of low variation of SD occur less variation of SUV.

키워드

참고문헌

  1. 고창순. 고창순 핵의학. 제3판. 고려의학. 2008;86.
  2. Ronald Boellaard. Effects of Noise, Image Resolution, and ROI Definition on the Accuracy of Standard Uptake Values: A Simulation Study. J Nucl Med September 1, 2004 vol. 45 no. 9 1519-1527
  3. Shyam M. Srinivas, .A recovery coefficient method for partial volume correction of PET images. Annals of Nuclear Medicine, June 2009, Volume 23, Issue 4, pp 341-348 https://doi.org/10.1007/s12149-009-0241-9
  4. Lee-Tzuu Chang, A Method for Attenuation Correction in Radionuclide Computed Tomography. IEEE Transactions on Nuclear Science Volume: 25, Issue: 1, Feb. 1978 p 638-640 https://doi.org/10.1109/TNS.1978.4329385
  5. N.A. Mullani, J. Markham, M.M. Ter-Pogossian, "Feasibility of time-of-flight reconstruction in positron emission tomography", Journal of Nuclear Medicine, vol. 21, pp. 1095-97, 1980.