참고문헌
- 2015 대한민국 에너지 편람 ,에너지관리공단, 2015
- BP Statistical Review of World Energy, 2017
- D. M. Andoshe, J. M. Jeon, S. Y. Kim, and H. W. Jang, "Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting," Electron. Mater. Lett., 11 [3] 323-335 (2015) https://doi.org/10.1007/s13391-015-4402-9
- Z. Chen, H. N. Dinh, and E. Miller, "Photoelectrochemical Water Splitting", Springer, New York (2013)
-
K.Osseo-Asare, D. Wei, and K. K. Mishra, "Dissolution Windows for Wet Chemical Processing of Silicon and Silicon Dioxide: Potential pH Diagrams for the
$SiFH_2O$ System," J. Electrochem. Soc., 143 [2] 749-751 (1996) https://doi.org/10.1149/1.1836512 -
H. S. Kim, K. S. Ahn, and S. H. Kang, "Enhancing photoelectrochemical water splitting performance of
$TiO_2$ nanotube arrays by controlling morphological properties," Electron. Mater. Lett. 10 [2] 345-349 (2014) https://doi.org/10.1007/s13391-013-3215-y - K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, and K. Domen, "GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting," J. Am. Chem. Soc., 127 [23] 8286-8287 (2005) https://doi.org/10.1021/ja0518777
-
B. Radisavlijevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer
$MoS_2$ transistors," Nat. Nanotechnol., 6, 147-150 (2011) https://doi.org/10.1038/nnano.2010.279 - Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., 7, 699-712 (2012) https://doi.org/10.1038/nnano.2012.193
- M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nat. Chem., 5 [4] 263-275 (2013) https://doi.org/10.1038/nchem.1589
- E. Marseglia, "Transition Metal Dichalcogenides and Their Intercalates," Int. Rev. Phys. Chem., 3 [2] 177-216 (1983) https://doi.org/10.1080/01442358309353343
- J. Wilson and A. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Adv. Phy., 18 [73] 193-335 (1969) https://doi.org/10.1080/00018736900101307
- F. Jellinek, "Transition metal chalcogenides. relationship between chemical composition, crystal structure and physical properties," React. Solid., 5 [4] 323-339 (1988) https://doi.org/10.1016/0168-7336(88)80031-7
- B. Abrams and J. Wilcoxon, "Nanosize Semiconductors for Photooxidation," Crit. Rev. Solid State, 30 [3] 153-182 (2005) https://doi.org/10.1080/10408430500200981
- L. Mattheis, "Band Structures of Transition-Metal-Dichalcogenide Layer Compounds," Phys. Rev. B, 8 [8] 3719-3740 (1973) https://doi.org/10.1103/PhysRevB.8.3719
-
L. Mattheis, "Energy Bands for 2H-
$NbSe_2$ and 2H-$MoS_2$ ," Phys. Rev. Lett., 30 [17] 784-787 (1973) https://doi.org/10.1103/PhysRevLett.30.784 -
S. Mahatha, K. Patel, and K. S. Menon, "Electronic structure investigation of
$MoS_2$ and$MoSe_2$ using angle-resolved photoemission spectroscopy and ab initio band structure studies," J. Phy-Condens. Mat., 24 [47] 475504 (2012) https://doi.org/10.1088/0953-8984/24/47/475504 - H. Jiang, "Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach," J. Phys. Chem. C, 116 [14] 7664-7671 (2012) https://doi.org/10.1021/jp300079d
- H. Terrones, F. Lopez-Urias, and M. Terrones, "Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides," Sci. Rep., 3 1549 (2013) https://doi.org/10.1038/srep01549
-
W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, "Evolution of Electronic Structure in Atomically Thin Sheets of
$WS_2$ and$WSe_2$ ," ACS Nano, 7 [1] 791-797 (2012) https://doi.org/10.1021/nn305275h - H. L. Zhuang and R. G. Hennig, "Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts," J. Phys. Chem. C, 117 [40] 20440-20445 (2013) https://doi.org/10.1021/jp405808a
-
A. Kuc, N. Zibouche, and T. Heine, "Influence of quantum confinement on the electronic structure of the transition metal sulfide
$TS_2$ ," Phys. Rev. B, 83 [24] 245213 (2011) https://doi.org/10.1103/PhysRevB.83.245213 - K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khot-kevich, S. Morozov, and A. Geim, "Two-dimensional atomic crystals," P. Natl. Acad. Sci. USA, 102 [30] 10451-10453 (2005) https://doi.org/10.1073/pnas.0502848102
- V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, "Liquid Exfoliation of Layered Materials," Science, 340, 1226419 (2013) https://doi.org/10.1126/science.1226419
- J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith,I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials," Science, 331 [6017] 568-71 (2011) https://doi.org/10.1126/science.1194975
- Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, "Single-layer semiconducting nanosheets: high-yield preparation and device fabrication," Angew. Chem. Int. Ed., 50 [47] 11093-11097 (2011) https://doi.org/10.1002/anie.201106004
- J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu, and K. P. Loh, "High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide," Nat. Commun., 5, 2995 (2014) https://doi.org/10.1038/ncomms3995
-
Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, "Controlled scalable synthesis of uniform, high-quality monolayer and few-layer
$MoS_2$ films," Sci. Rep.. 3, 1866 (2013) https://doi.org/10.1038/srep01866 - K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, "Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production," Energy Environ. Sci., 9 2240-2248 (2016) https://doi.org/10.1039/C6EE00144K
-
J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang, and X. Duan, "Chemical vapor deposition growth of monolayer
$MoSe_2$ nanosheets," Nano Res., 7 [4] 511-517 (2014) https://doi.org/10.1007/s12274-014-0417-z -
Q. Ding, F. Meng, C. R. English, M. Caban-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, "Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic
$MoS_2$ ," J. Am. Chem. Soc., 136, 8504-8507 (2014) https://doi.org/10.1021/ja5025673 -
A. L. Elias, N. Perea-Lopez, A. S. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones, and M. Terrones, "Controlled Synthesis and Transfer of Large-Area
$WS_2$ Sheets: From Single Layer to Few Layers," ACS Nano, 7 [6] 5235-5242 (2013) https://doi.org/10.1021/nn400971k - T. Scharf, S. Prasad, T. Mayer, R. Goeke, and M. Dugger, "Atomic layer deposition of tungsten disulphide solid lubricant thin films," J. Mater. Res., 19 [12] 3443-3446 (2004) https://doi.org/10.1557/JMR.2004.0459
-
L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Low, and K. P. Loh, "Atomic layer deposition of a
$MoS_2$ film," Nanoscale, 6 [18] 10584-8 (2014) https://doi.org/10.1039/C4NR02451F -
P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat, "Ab Initio Study of the H2-
$H_2S$ /$MoS_2$ Gas-Solid Interface: The Nature of the Catalytically Active Sites," J. Catal., 189 [1] 129-146 (2000) https://doi.org/10.1006/jcat.1999.2698 -
B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Norskov, "Biomimetic hydrogen evolution:
$MoS_2$ nanoparticles as catalyst for hydrogen evolution.," J. Am. Chem. Soc., 127 [15] 5308-9 (2005) https://doi.org/10.1021/ja0504690 -
T. F. Jaramillo, K. P. Joorgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, "Identification of active edge sites for electrochemical
$H_2$ evolution from$MoS_2$ nanocatalysts," Science, 317 [5834] 100-102 (2007) https://doi.org/10.1126/science.1141483 -
J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, "Engineering the surface structure of
$MoS_2$ to preferentially expose active edge sites for electrocatalysis." Nat. Mater., 11 [11] 963-969 (2012) https://doi.org/10.1038/nmat3439 -
L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, "Ultrathin
$WS_2$ nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction," Angew. Chem. Int. Ed., 53 [30] 7860-7863 (2014) https://doi.org/10.1002/anie.201402315 - D. Merki, H. Vrubel, L. Rovelli, S. Fierro, and X. Hu, "Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution," Chem. Sci., 3 [8] 2515-2525 (2012) https://doi.org/10.1039/c2sc20539d
-
M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, "Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic
$MoS_2$ Nanosheets," J. Am. Chem. Soc., 135 [28] 10274-10277 (2013) https://doi.org/10.1021/ja404523s -
D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, "Enhanced catalytic activity in strained chemically exfoliated
$WS_2$ nanosheets for hydrogen evolution," Nat. Mater., 12 850-855 (2013) https://doi.org/10.1038/nmat3700 - J. Kim, S. Byun, A. J. Smith, J. Yu, and J. Huang, "Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration," J. Phys. Chem. Lett., 4 [8] 1227-1232 (2013) https://doi.org/10.1021/jz400507t
-
Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee, and X. Wang, "Facile synthesis of low crystalline
$MoS_2$ nanosheet-coated CNTs for enhanced hydrogen evolution reaction," Nanoscale, 5 7768-7771 (2013) https://doi.org/10.1039/c3nr02994h -
X. Xu, J. Hu, Z. Yin, and C. Xu, "Photoanode Current of Large-Area
$MoS_2$ Ultrathin Nanosheets with Vertically Mesh-Shaped Structure on Indium Tin Oxide," ACS Appl. Mater. Interfaces, 6 [8] 5983-5987 (2014) https://doi.org/10.1021/am501159s -
Y. Liu, Y.-X. Yu, and W.-D. Zhang, "
$MoS_2$ /CdS Heterojunction with High Photoelectrochemical Activity for$H_2$ Evolution under Visible Light: The Role of$MoS_2$ ," J. Phys. Chem. C, 117 [25] 12949-12957 (2013) https://doi.org/10.1021/jp4009652 - K. C. Kwon, S. Choi, K. Hong, D. M. Andoshe, J. M. Suh, C. Kim, K. S. Choi, J. H. Oh, S. Y. Kim, and H. W. Jang, "Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production," MRS Communications, 7 272-279 (2017) https://doi.org/10.1557/mrc.2017.37
-
X. Yu, M. S. Prevot, N. Guijarro, and K. Sivula, "Self-assembled 2D
$WSe_2$ thin films for photoelectrochemical hydrogen production," Nat. Commun., 6 7596 (2015) https://doi.org/10.1038/ncomms8596 - K. C. Kwon, S. Choi, J. Lee, K. Hong, W. Sohn, D. M. Andoshe, K. S. Choi, Y. Kim, S. Han, S. Y. Kim, and H. W. Jang, "Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes," J. Mater. Chem. A, 5 [30] 15534-15542 (2017) https://doi.org/10.1039/C7TA03845C
-
Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito, J. Han, X. Guo, Z. Tang, T. Fujita, A. Hirata, M. W. Chen, "Monolayer
$MoS_2$ Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production," Adv. Mater., 26 [47] 8023-8028 (2014) https://doi.org/10.1002/adma.201403808