DOI QR코드

DOI QR Code

A novel approach to bind graphene oxide to polyamide for making high performance Reverse Osmosis membrane

  • Raval, Hiren D. (CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR)) ;
  • Das, Ravi Kiran (CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR))
  • Received : 2017.05.02
  • Accepted : 2017.09.08
  • Published : 2017.11.25

Abstract

We report the novel thin film composite RO membrane modified by graphene oxide. The thin film composite RO membrane was exposed to 2000 mg/l sodium hypochloride; thereafter it was subjected to different graphene oxide concentration ranging from 50 mg/l to 1000 mg/l in water. The resultant membrane was crosslinked with 5000 mg/l N-hydroxysuccinimide. The performance of different membranes were analysed by solute rejection and water-flux measurement. It was found that 100 mg/l graphene oxide exposure followed by 5000 mg/l N-hydroxysuccinimide treatment resulted in the membrane with the highest solute rejection of 97.78% and water-flux of 4.64 Liter per sqm per hour per bar g. The membranes were characterized by contact angle for hydrophilicity, scanning electron micrographs for surface morphology, energy dispersive X-Ray for chemical composition of the surface, Atomic force microscope for surface roughness, ATR-FTIR for chemical structure identification. It was found that the graphene oxide modified membrane increases the salt rejection performance after exposure to high-fouling water containing albumin. Highly hydrophilic, antifouling surface formation with the nanomaterial led to the improved membrane performance. Moreover, the protocol of incorporating nanomaterial by this post-treatment is simple and can be applied to any RO membrane after it is manufactured.

Keywords

References

  1. Buonomenna, M.G. (2013), "Nano-enhanced reverse osmosis membranes", Desalinat., 314, 73-88. https://doi.org/10.1016/j.desal.2013.01.006
  2. Choi, W., Choi, J., Bang, J. and Lee, J.H. (2013), "Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications", ACS Appl. Mater. Interf., 5, 12510-12519. https://doi.org/10.1021/am403790s
  3. Dong, H., Zhao, L., Zhang, L., Chen, H., Gao, C., Winston, W.S. and Ho, W. W. (2015), "High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination", J. Membr. Sci., 476, 373-383. https://doi.org/10.1016/j.memsci.2014.11.054
  4. Duan, J., Pan, Y., Pacheco, F., Litwiller, E., Lai, Z. and Pinnau I. (2015), "High-performance polyamide thinfilm-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework", J. Membr. Sci., 476, 303-310. https://doi.org/10.1016/j.memsci.2014.11.038
  5. Fathizadeh, M., Aroujalian, A. and Raisi, A. (2011), "Effect of added NaXnano-zeolite into polyamideas a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process", J. Membr. Sci., 375, 88-95. https://doi.org/10.1016/j.memsci.2011.03.017
  6. Gugliuzza, A., Politano, A. and Drioli, E. (2017), "The advent of graphene and other two-dimensional materials in membrane science and technology", Curr. Opin. Chem. Eng., 16, 78-85. https://doi.org/10.1016/j.coche.2017.03.003
  7. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Sci., 312, 1034-1037. https://doi.org/10.1126/science.1126298
  8. Hu, M. and Mi, B. (2013), "Enabling graphene oxide nanosheets as water separation membranes", Environ. Sci. Technol., 47, 3715-3723. https://doi.org/10.1021/es400571g
  9. Jadav, G.L. and Singh, P.S. (2009), "Synthesis of novel silica-polyamide nanocomposite membranewith enhanced properties", J. Membr. Sci., 328, 257-267. https://doi.org/10.1016/j.memsci.2008.12.014
  10. Jeong, B.H., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K. and Jawor, A. (2007), "Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes", J. Membr. Sci., 294, 1-7. https://doi.org/10.1016/j.memsci.2007.02.025
  11. Khorshidi, B., Thundat, T., Fleck, B.A. and Sadrzadeh, M. (2016), "Novel approach toward fabrication of high performance thin film composite polyamide membranes", Scientific Reports, 6, 22069. https://doi.org/10.1038/srep22069
  12. Lee, H.D., Kim, H.W., Cho, Y.H. and Park, H.B. (2014), "Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes", Small, 10(13), 2653-2660. https://doi.org/10.1002/smll.201303945
  13. Lind, M.L., Ghosh, A.K., Jawor, A., Huang, X., Hou, W., Yang, Y. and Hoek, E.M.V. (2009), "Influence ofzeolite crystal size on zeolitepolyamide thin film nanocomposite membranes", Langmuir, 25, 10139-10145. https://doi.org/10.1021/la900938x
  14. Park, M.J., Phuntsho, S., He, T., Nisola, G.M., Tijing, L.D., Li, X.M., Chen, G., Chung, W.J. and Shon, H.K. (2015), "Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes", J. Membr. Sci., 493,496-507. https://doi.org/10.1016/j.memsci.2015.06.053
  15. Petersen, R.J. and Cadotte, J.E. (1990), "Thin film compositereverse osmosis membranes, in Handbook of IndustrialMembrane Technology", M.E. Porter, Ed. Park Ridge, NJ Noyes Publications.
  16. Rangarajan, R., Desai, N.V., Daga, S.L., Joshi, S.V., Rao, A.P., Shah, V.J., ... and Raval, H.D. (2011), "Thin film composite reverse osmosis membrane development and scale up at CSMCRI, Bhavnagar", Desalinat., 282, 68-77. https://doi.org/10.1016/j.desal.2011.09.003
  17. Raval, H.D. and Gohil, J.M. (2009), "Carbon nanotube membrane in seawater desalination", Int. J. Nuclear Desalinat., 3(4), 360-368. https://doi.org/10.1504/IJND.2009.028863
  18. Raval, H.D. and Gohil, J.M. (2010), "Nanotechnology in water treatment: an emerging trend", Int. J. Nuclear Desalinat., 4(2), 184-188. https://doi.org/10.1504/IJND.2010.035176
  19. Raval, H.D., Chauhan ,V.R., Raval, A.H. and Mishra, S. (2012), "Rejuvenation of discarded RO membrane for new applications", Desal. Water Treat., 48(1-3), 349-359. https://doi.org/10.1080/19443994.2012.704727
  20. Raval, H.D., Rana, P.S. and Maiti, S. (2015), "A novel high-flux, thin-film composite reverseosmosis membrane modified by chitosan for advanced water treatment", RSC Adv., 5, 6687-6694. https://doi.org/10.1039/C4RA12610F
  21. Raval, H.D., Trivedi, J.J., Joshi, S.V. and Devmurari, C.V. (2010), "Flux enhancement of thin film composite membrane by controlled chlorine treatment", Desalinat., 250, 945-949. https://doi.org/10.1016/j.desal.2009.05.005
  22. Safarpour, M., Khataee, A. and Vatanpour, V. (2015), "Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO 2 with improved desalination performance", J. Membr. Sci., 489, 43-54. https://doi.org/10.1016/j.memsci.2015.04.010
  23. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008), "Science and technology for water purification in the coming decades", Nature, 452, 301-310. https://doi.org/10.1038/nature06599
  24. Song, X., Wang, L., Mao, L. and Wang, Z. (2016), "Nanocomposite membrane with different carbon nanotubes location for nanofiltration and forward osmosis applications", ACS Sustain. Chem. Eng., 4, 2990-2997. https://doi.org/10.1021/acssuschemeng.5b01575
  25. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D, Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442, 282-286. https://doi.org/10.1038/nature04969
  26. Yin, J., Kim, E., Yang, J. and Deng, B.L. (2012), "Fabrication of a novel thin-film nanocomposite(TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification", J. Membr. Sci., 423-424, 238-246. https://doi.org/10.1016/j.memsci.2012.08.020
  27. Zeng, R.J., Lemaire, R., Yuan, Z. and Keller, J. (2004), "A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal", Water Sci. Technol., 50(10), 163-170.
  28. Zhang, L., Shi, G.Z., Qiu, S., Cheng, L.H. and Chen, H.L. (2011), "Preparation of high-flux thin filmnanocomposite reverse osmosis membranes by incorporating functionalizedmulti-walled carbon nanotubes", Desal. Water Treat., 34, 19-24. https://doi.org/10.5004/dwt.2011.2801

Cited by

  1. Advances in surface modification techniques of reverse osmosis membrane over the years vol.54, pp.3, 2017, https://doi.org/10.1080/01496395.2018.1483404