DOI QR코드

DOI QR Code

Selection of Optimal Application Condition of Corn Waste Biochar for Improvement of Corn Growth and Soil Fertility

  • Kang, Se-Won (Department of Bio-environmental Sciences, Sunchon National University) ;
  • Kim, Seong-Heon (Division of Applied Life Science, Gyeongsang National University) ;
  • Park, Jong-Hwan (School of Plant, Environmental, and Soil Sciences, Louisiana State University AgCenter) ;
  • Seo, Dong-Cheol (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Ju-Sik (Department of Bio-environmental Sciences, Sunchon National University)
  • Received : 2017.09.06
  • Accepted : 2017.11.06
  • Published : 2017.10.31

Abstract

This study was conducted to select an optimal approach to corn waste biochar (BC) application, and to evaluate the effects of combined application of BC and inorganic fertilizer (IF) on corn growth and soil chemical properties in a pot experiment. Corn growth differed with BC application timing and BC application levels. Based on the characteristics of corn growth in pot-based experiments, the selected optimal application conditions of BC were application of $500kg\;10a^{-1}$ at 20 days before sowing. Also, the chemical properties of the tested soil with BC after corn harvesting were significantly improved than those in the other treatments. In particular, soil pH and CEC regardless of application conditions were markedly increased by 0.04~0.19 units and $0.08{\sim}2.58coml_c\;kg^{-1}$ in BC treatments than without BC treatments. Additionally, combined application of BC and IF had greater effects on corn growth than single application of BC. Therefore, the results suggest using properly BC application conditions and a combination of BC and IF for effective corn cultivation in an upland field.

Keywords

References

  1. Abujabhah, I.S., S.A. Bound, R. Doyle, and J.P. Bowman. 2016. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol. 98:243-253. https://doi.org/10.1016/j.apsoil.2015.10.021
  2. Ahmad, M., S.S. Lee, X. Dou, D. Mohan, J.K. Sung, J.E. Yang, and Y.S. Ok. 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118:536-544. https://doi.org/10.1016/j.biortech.2012.05.042
  3. Asai, H., B.K. Samson, H.M. Stephan, K. Songyikhangsuthor, K. Homma, Y. Kiyono, Y. Inoue, T. Shiraiwa, and T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res. 111:81-84. https://doi.org/10.1016/j.fcr.2008.10.008
  4. Burrell, L.D., F. Zehetner, N. Rampazzo, B. Wimmer, and G. Soja. 2016. Long-term effects of biochar on soil physical properties. Geoderma 282:96-102. https://doi.org/10.1016/j.geoderma.2016.07.019
  5. Butnan, S., J.L. Deenik, B. Toomsan, M.J. Antal, and P. Vityakon. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237-238:105-116. https://doi.org/10.1016/j.geoderma.2014.08.010
  6. Carvalho, M.T.M., B.E. Madari, L. Bastiaans, P.A.J. van Oort, W.G.O. Leal, A.B. Heinemann, M.A.S. da Silva, A.H.N. Maia, D. Parsons, and H. Meinke. 2016. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield. Geoderma 276:7-18. https://doi.org/10.1016/j.geoderma.2016.04.013
  7. Chan, K.Y., L.V. Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2007. Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 45:629-634. https://doi.org/10.1071/SR07109
  8. Cho, H.R., Y.S. Zhang, K.H. Han, H.J. Cho, J.H. Ryu, K.Y. Jung, K.R. Cho, A.S. Ro, S.J. Lim, S.C. Choi, J.I. Lee, W.K. Lee, B.K. Ahn, B.H. Kim, C.Y. Kim, J.H. Park, and S.H. Hyun. 2012. Soil physical properties of arable land by land use across the country. Korean J. Soil Sci. Fert. 45:344-352. https://doi.org/10.7745/KJSSF.2012.45.3.344
  9. Demir, Z. and C. Gulser. 2015. Effects of rice husk compost application on soil quality parameters in greenhouse conditions. Eurasian J. Soil Sci. 4:185-190. https://doi.org/10.18393/ejss.2015.3.185-190
  10. Farrel, M., T.K. Kuhn, L.M. Macdonald, T.M. Maddern, D.V. Murphy, Pa.A. Hall, B.P. Singh, K. Bauhmann, E.S. Skull, and J.A. Baldock. 2013. Microbial utilization, of biochar-derived carbon. Sci. Total Environ. 465:288-297. https://doi.org/10.1016/j.scitotenv.2013.03.090
  11. Guo, J.H., X.J. Liu, Y. Zhang, J.L. Shen, W.X. Han, W.F. Zhang, P. Christie, K.W.T. Goulding, P.M. Vitousek, and F.S. Zhang. 2010. Significant acidification in major Chinese crop lands. Sci. 327-1008-1010. https://doi.org/10.1126/science.1182570
  12. Hunt, J., M. DuPonte, D. Sato, and A. Kawabata. 2010. The basics of biochar: A natural soil amendment. Soil and Crop Management Dec. 2010 SCM-30:1-6.
  13. Jien, S.H. and C.S. Wang. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110:225-233. https://doi.org/10.1016/j.catena.2013.06.021
  14. Kang, S.W., D.C. Seo, Y.H. Cheong, J.W. Park, H.W. Kang, K.D. Park, Y.S. Ok, and J.S. Cho. 2016a. Effect of barley straw biochar application on greenhouse gas emissions from upland soil for Chinese cabbage cultivation in short-term laboratory experiments. J. Mt. Sci. 13:693-702. https://doi.org/10.1007/s11629-014-3428-z
  15. Kang, S.W., J.W. Park, D.C. Seo, Y.S. Ok, K.D. Park, I.W. Choi, and J.S. Cho. 2016b. Effect of biochar application on rice yield and greenhouse gas emission under different nutrient conditions from paddy soil. J. Environ. Eng. 142:Issue 10.
  16. Kim, H.S., K.R. Kim, J.E. Yang, Y.S. Ok, G. Owens, T. Nehls, G. Wessolek, and K.H. Kim. 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142:153-159 https://doi.org/10.1016/j.chemosphere.2015.06.041
  17. Kim, M.K., S.O. Hur, S.I. Kwon, G.B. Jung, Y.K. Soun, S.K. Ha, and D.B. Lee. 2010. Prediction of soil erosion from agricultural uplands under precipitation change scenarios. Korean J. Soil Sci. Fert. 43:789-792.
  18. Kim, T.Y., R.D. Aileen, A. Faridul, and Y.B. Lee. 2012. Evaluation of nitrogen and phosphorus balance in green manure-rice cropping systems without incorporation of green manure crops. Korean J. Environ. Agric. 31:308-312. https://doi.org/10.5338/KJEA.2012.31.4.308
  19. Kloss, S., F. Zehetner, B. Wimmer, J. Buecker, F. Rempt, and G. Soja. 2014. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions. J. Plant Nutr. Soil Sci. 177:3-15. https://doi.org/10.1002/jpln.201200282
  20. Lim, J.T., J.H. Chang, Y.J. Rho, J.H. Ryu, D.Y. Chung, and J.W, Cho. The effect of nitrogen rates on the growth and yield of maize in agricultural fields with the stream. Korean J. Crop Sci. 59(1):101-108. https://doi.org/10.7740/kjcs.2014.59.1.101
  21. Liu, Y., M. Yang, Y. Wu, H. Wang, Y. Chen, and W. Wu. 2011. Reducing $CH_4$ and $CO_2$ emissions from water logged paddy soil with biochar. J. Soils Sediments. 11:930-939. https://doi.org/10.1007/s11368-011-0376-x
  22. Liu, Y., M. Yang, Y. Wu, H. Wang, Y. Chen, and W. Wu. 2011. Reducing $CH_4$ and $CO_2$ emissions from waterlogged paddy soil with biochar. J. Soils Sediments 11:930-939. https://doi.org/10.1007/s11368-011-0376-x
  23. Major, J. 2010. Guideline on practical aspects of biochar application to field soil in various soil management systems. International Biochar Initiative.
  24. Mia, S., J.W. van Groenigen, T.F.J. van de Voorde, N.J. Oram, T.M. Bezemer, L. Mommer, and S. Jeffery. 2014. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric., Ecosyst. Environ. 91:83-91.
  25. Miao, Y.X., A. Stewart Bobby, and F.S. Zhang. 2011. Long-term experiments for sustainable nutrient management in China. A riview. Agron. Sustainable Dev. 31:397-414. https://doi.org/10.1051/agro/2010034
  26. Na, S.Y., M.S. Lee, J.H. Yang, K.E. Lee, and H.B. Lee. 2016. Growth characteristics .fresh and dry weight of the corn inbred lines with multi-tiller and ear using forgage crop. Korean J. Crop Sci. 61(3):191-195. https://doi.org/10.7740/kjcs.2016.61.3.191
  27. NIAST., 2000. Methods of soil and plant analysis, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  28. Nigussie, A., E. Kissi, M. Misganaw, and G. Ambaw. 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am. Eurasian J. Agric. Environ. Sci. 12:369-376.
  29. Roh, Y.J., D.Y. Chung, J.H. Ryu, J.D. So, and J.W. Cho. 2015. The effects of nitrogen rates on the growth and yield of waxy corn after cultivating hairy vetch in agricultural fields with the stream. Koran J. Crop Sci. 60(3):333-337. https://doi.org/10.7740/kjcs.2015.60.3.333
  30. Rutigliano, F.A., M. Romano, R. Marzaioli, I. Baglivo, S. Baronti, F. Miglietta, and S. Castaldi. 2014. Effect of biochar addition on soil microbial community in wheat crop. Eur. J. Soil Biol. 60:9-15. https://doi.org/10.1016/j.ejsobi.2013.10.007
  31. Sukartono, W.H., Utomo, W.H. Nugroho, and Z. Kusuma1. 2011. Simple biochar production generated from cattle dung and coconut shell. J. Basic Appl. Sci. 10:1680-1685.
  32. Uzoma, K.C., M. Inoue, H. Andry, H. Fujimaki, A. Zahoor, and E. Nishiihara. 2011 Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 27:205-212. https://doi.org/10.1111/j.1475-2743.2011.00340.x
  33. Zhang, A., Y. Liu, G. Pan, Q. Hussain, L. Li, J. Zheng, and X Zhang. 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from central China plain. Plant Soil 351:263-275. https://doi.org/10.1007/s11104-011-0957-x
  34. Zwieten, L.V., S. Kimber, S. Morris, K.Y. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235-246. https://doi.org/10.1007/s11104-009-0050-x