DOI QR코드

DOI QR Code

Multiscale Analysis on Expectation of Mechanical Behavior of Polymer Nanocomposites using Nanoparticulate Agglomeration Density Index

나노 입자의 군집밀도를 이용한 고분자 나노복합재의 기계적 거동 예측에 대한 멀티스케일 연구

  • Baek, Kyungmin (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Shin, Hyunseong (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Han, Jin-Gyu (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Cho, Maenghyo (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2017.09.05
  • Accepted : 2017.10.30
  • Published : 2017.10.31

Abstract

In this study, multiscale analysis in which the information obtained from molecular dynamics simulation is applied to the continuum mechanics level is conducted to investigate the effects of clustering of silicon carbide nanoparticles reinforced into polypropylene matrix on mechanical behavior of nanocomposites. The elastic behavior of polymer nanocomposites is observed for various states of nanoparticulate agglomeration according to the model reflecting the degradation of interphase properties. In addition, factors which mainly affect the mechanical behavior of the nanocomposites are identified, and new index 'clustering density' is defined. The correlation between the clustering density and the elastic modulus of nanocomposites is understood. As the clustering density increases, the interfacial effect decreased and finally the improvement of mechanical properties is suppressed. By considering the random distribution of the nanoparticles, the range of elastic modulus of nanocomposites for same value of clustering density can be investigated. The correlation can be expressed in the form of exponential function, and the mechanical behavior of the polymer nanocomposites can be effectively predicted by using the nanoparticulate clustering density.

본 연구에서는 폴리프로필렌 내에 투입된 탄화규소 나노 입자들의 군집현상이 나노복합재의 역학적 거동에 미치는 영향을 고찰하기 위해 분자동역학 전산모사를 통해 얻은 정보를 연속체 역학 수준에 적용시키는 멀티스케일 해석을 수행하였다. 입자 간의 거리에 따른 계면 물성의 하락을 반영하는 모델을 이용하여, 다양한 군집 상황에 따른 고분자 나노복합재의 탄성거동 변화를 관찰하였다. 또한, 나노복합재의 기계적 거동에 영향을 미치는 주요 요인을 파악하여 군집밀도라는 새로운 지표를 정의하였다. 나노 입자의 군집밀도와 나노복합재의 탄성거동 간의 상관관계를 파악한 결과, 군집밀도의 값이 증가할수록 계면효과가 저하되어 최종적으로 나노복합재의 기계적 물성 상승이 억제되었다. 나노 입자의 랜덤분포를 고려한 해석을 통해, 동일한 군집밀도의 수치에 대해 나노복합재가 가질 수 있는 탄성계수의 범위를 파악할 수 있었다. 상관관계는 지수 함수형태로 표현될 수 있었으며, 이를 통해 나노 입자의 군집밀도를 이용하여 고분자 나노복합재의 기계적 거동을 효과적으로 예측 가능하다.

Keywords

References

  1. Ajayan, P. M., Schadler, L.S., Giannaris, C., and Rubio, A., "Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness," Advanced Materials, Vol. 12, No. 10, 2000, pp. 750-753. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  2. Zheng, Y., Zheng, Y., and Ning R., "Effects of Nanoparticles $SiO_2$ on the Performance of Nanocomposites," Materials Letters, Vol. 57, No. 19, 2003, pp. 2940-2944. https://doi.org/10.1016/S0167-577X(02)01401-5
  3. Nan, C.W., Liu, G., Lin, Y., and Li, M., "Interface Effect on Thermal Conductivity of Carbon Nanotube Composites," Applied Physics Letters, Vol. 85, No. 16, 2004. Id. 3549. https://doi.org/10.1063/1.1808874
  4. Sundaray, B., Subramanian, V., Natarajan, T.S., and Krishnamurthy, "Electrical Conductivity of a Single Electrospun Fiber of Poly(methyl methacrylate) and Multiwalled Carbon Nanotube Nanocomposites," Applied Physics Letters, Vol. 88, 2006, 143114. https://doi.org/10.1063/1.2193462
  5. Koo, J.H., Polymer Nanocomposites: Processing, Characterization, and Applications, McGraw-Hill, New York, USA, 2007.
  6. Vaisman, L., Wagner, H.D., and Marom, G. "The Role of Surfactants in Dispersion of Carbon Nanotubes," Advances in Colloid and Interface Science, Vol. 128-130, 2006, pp. 37-46. https://doi.org/10.1016/j.cis.2006.11.007
  7. Liu, J., Gao, Y., Cao, D., Zhang, L., and Guo, Z., "Nanoparticle Dispersion and Aggreation in Polymer Nanocomposites: Insight from Molecular Dynamics Simulation," Langmuir, Vol. 27, No. 12, 2011, pp. 7926-7933. https://doi.org/10.1021/la201073m
  8. Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., and Varlet, J. "Nanofillers in Polymeric Matrix: A Study on Silica Reinforced PA6," Polymer, Vol. 42, No. 21, 2001, pp. 8759-8768. https://doi.org/10.1016/S0032-3861(01)00446-3
  9. Yang, Q.-S., He, X.-Q., Liu, X., Leng, F.-F., and Mai, Y.-W., "The Effective Properties and Local Aggregation Effect of CNT/SMP Composites," Composites Part B: Engineering, Vol. 43, No. 1, 2012, pp. 33-38. https://doi.org/10.1016/j.compositesb.2011.04.027
  10. Thakre, P.R., Bisrat, Y., and Lagoudas, D.C., "Electrical and Mechanical Properties of Carbon Nanotube-Epoxy Nanocomposites," Journal of Applied Polymer Science, Vol. 116, No.1, 2010, pp. 191-202. https://doi.org/10.1002/app.31122
  11. Shin, H., Yang, S., Choi, J., Chang, S., and Cho, M., "Effect of Interphase Percolation on Mechanical Behavior of Nanoparticle-reinforced Polymer Nanocomposites with Filler Agglomeration: A Multiscale Approach," Chemical Physics Letters, Vol. 635, 2015, pp. 80-85. https://doi.org/10.1016/j.cplett.2015.06.054
  12. Shin, H., Baek, K., Han, J.-G., and Cho, M., "Homogenization Analysis of Polymeric Nanocomposites Containing Nanoparticulate Clusters,", Composites Science and Technology, Vol. 138, 2017, pp. 217-224. https://doi.org/10.1016/j.compscitech.2016.11.021
  13. Accelrys Inc., San Diego, http://www.accelrys.com/
  14. MSC Software Inc., California, http://www.mscsoftware.com/
  15. Odegard, G.M., Clancy, T.C., and Gates, T.S., "Modeling of the Mechanical Properties of Nanoparticle/polymer Composites," Polymer, Vol. 46, No. 2, 2005, pp. 553-562. https://doi.org/10.1016/j.polymer.2004.11.022
  16. Yang, S., and Cho, M., "Scale Bridging Method to Characterize Mechanical Properties of Nanoparticle/polymer Nanocomposites," Applied Physics Letters, Vol. 93, 2008, 043111. https://doi.org/10.1063/1.2965486
  17. DIGIMAT, Software Platform for Nonlinear Multi-scale Modeling of Composite Materials and Structures, Belgium and Luxembourg: e-Xstream Engineering, 2009. Available from: www.e-Xstream.com
  18. ABAQUS/CAE, version 6.12, 2012.
  19. Wemhoff, A.P., and Webb, A.J., "Investigation of Nanoparticle Agglomeration on the Effective Thermal Conductivity of a Composites Material," International Journal of Heat and Mass Transfer, Vol. 97, 2016, pp. 432-438. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.027