DOI QR코드

DOI QR Code

그래핀 기반 폴리이미드 복합재의 기계적 물성

Mechanical Properties of Graphene-based Polyimide Composites

  • Nam, Ki-Ho (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Yu, Jaesang (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • You, Nam-Ho (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Han, Haksoo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ku, Bon-Cheol (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
  • 투고 : 2017.08.04
  • 심사 : 2017.10.25
  • 발행 : 2017.10.31

초록

고분자 복합재료는 유기 중합체인 고분자 수지를 기지로 다양한 충전제를 균일하게 분산시킨 소재로서 가공성이 우수하며 제품의 다양성이 많은 특징이 있다. 최근에는 탄소 나노소재들이 개발됨에 따라 이를 보강재로 활용하여 보다 우수한 복합재료를 개발하기 위한 많은 노력이 있다. 보강재 본래의 특성을 최대한 복합재료로 전환시키기 위해서는 이들의 분산, 배향 및 계면특성이 매우 중요하게 여겨진다. 본 총설 논문에서는 그래핀 기반 폴리이미드 복합재료의 고강도화 및 고인성화 기술 전략으로써 그래핀 기능화에 의한 표면 화학구조와 물성간 상관관계를 도출하고 설명하고자 한다.

Polymer composites are materials in which various fillers are uniformly dispersed on the basis of organic resin. They have excellent processability and diversity for industrial products. Recently, as carbon nanomaterials are developed, there is a great deal of effort to use them as reinforcing fillers to fabricate high performance composite materials. In order to transfer the inherent properties of fillers into composite materials as much as possible, the good dispersion and orientation of fillers, and favorable interfacial interaction between fillers and matrix are considered to be very important. In this review article, we intent to derive and explain the relationship between surface chemical structure of fillers and physical properties of composites as a strategy of high strength and toughness of graphenebased polyimide composites.

키워드

참고문헌

  1. Choe, C.R., "Nanocarbon Polymer Composites," Composites Research, Vol. 26, 2013, pp. 147-154. https://doi.org/10.7234/composres.2013.26.3.147
  2. Vilatela, J.J., and Eder, D., "Nanocarbon Composites and Hybrids in Sustainability: A Review," ChemSusChem, Vol. 5, 2012, pp. 456-478. https://doi.org/10.1002/cssc.201100536
  3. Winey, K.I., and Vaia, R.A., "Polymer Nanocomposites," MRS Bulletin, Vol. 32, 2007, pp. 314-322. https://doi.org/10.1557/mrs2007.229
  4. Jia, X., Zhang, Q., Zhao, M.-Q., Xu, G.-H., Huang, J.-Q., Quan, W., Lu, Y., and Wei, F., "Dramatic Enhancements in Toughness of Polyimide Nanocomposite via Long-CNT-induced Long Range Creep," Journal of Materials Chemistry, Vol. 22, 2012, pp. 7050-7056. https://doi.org/10.1039/c2jm15359a
  5. Seo, K., Seo, J., Nam, K.-H., and Han, H., "Polybenximidazole/Inorganic Composite Membrane with Advanced Performance for High Temperature Polymer Electrolyte Membrane Fuel Cells," Polymer Composites, Vol. 38, 2017, pp. 87-95. https://doi.org/10.1002/pc.23563
  6. Papageorgiou, D.G., Ian A. Kinloch, I.A., and Young, R.J., "Mechanical Properties of Graphene and Graphene-based Nanocomposites," Progress in Materials Science, Vol. 90, 2017, pp.75-127. https://doi.org/10.1016/j.pmatsci.2017.07.004
  7. Liaw, D.-J., Wang, K.-L., Huang, Y.-C., Lee, K.-R., Lai, J.-Y., and Ha, C.-S., "Advanced Polyimide Materials: Synthesis, Physical Properties and Applications," Progress in Polymer Science, Vol. 37, 2012, pp. 907-974. https://doi.org/10.1016/j.progpolymsci.2012.02.005
  8. Nam, K.-H., Kim, H., Choi, H.K., Yeo, H., Goh, M., Yu, J., Hahn, J.R., Han, H., Ku, B.-C., and You, N.-H., "Thermomechanical and Optical Properties of Moleculary Controlled Polyimides Derived from Ester Derivatives," Polymer, Vol. 108, 2017, pp. 502-512. https://doi.org/10.1016/j.polymer.2016.11.062
  9. Takizawa, K., Wakita, J., Sekiguchi, K., and Ando, S., "Variations in Aggregation Structures and Fluorescence Properties of a Semialiphatic Fluorinated Polyimide Induced by Very High Pressure," Macromolecules, Vol. 45, 2012, pp. 4764-4771. https://doi.org/10.1021/ma300497a
  10. Park, O.-K., Hwang, J.-Y., Goh, M., Lee, J.H., Ku, B.-C., and You, N.-H., "Mechanically Strong and Multifunctional Polyimide Nanocomposites Using Aminophenyl Functionalized Graphene Nanosheets," Macromolecules, Vol. 46, 2013, pp. 3505-3511. https://doi.org/10.1021/ma400185j
  11. Jin, F.-L., and Park, S.-J., "A Review of the Preparation and Properties of Carbon Nanotubes-reinforced Polymer Composites," Carbon Letters, Vol. 12, 2011, pp. 57-69. https://doi.org/10.5714/CL.2011.12.2.057
  12. Ku, B.-C., Kim, D.W., Lee, J.S., Blumstein, A., Kumar, J., and Samuelson, L.A., "Synthesis and Properties of Water Soluble Single-walled Carbon Nanotube Graft Ionic Poly-acetylene Nanocomposites," Polymer Composites, Vol. 30, 2009, pp. 1817-824. https://doi.org/10.1002/pc.20754
  13. Dreyer, D.R., Park, S., Bielawsk, C.W., and Ruoff, R.S., "The Chemistry of Graphene Oxide," Chemical Society Reviews, Vol. 39, 2010, pp. 228-240. https://doi.org/10.1039/B917103G
  14. Novoselov, K.S., Fal'Ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., and Kim, K., "A Roadmap for Graphene," Nature, Vol. 490, 2012, pp. 192-200. https://doi.org/10.1038/nature11458
  15. Stankovich, S., Dikin, D.A., Dommentt, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., "Graphene-based Composite Materials," Nature, Vol. 442, 2006, 282-286. https://doi.org/10.1038/nature04969
  16. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., and Koratkar, N., "Enhanced Mechancial Properties of Nanocomposites at Low Graphene Content," ACS Nano, Vol. 3, 2009, pp. 3884-3890. https://doi.org/10.1021/nn9010472
  17. Luong, N.D., Hippi, U., Korhonen, J.T., Soininen, A.J., Ruokolainen, J., Johansson, L.-S., Nam, J.-D., Sinh, L.H., and Seppala, J., "Enhanced Mechanical and Electrical Properties of Polyimide Film by Graphene Sheets via In Situ Polymerization," Polymer, Vol. 52, 2011, 5237-5242. https://doi.org/10.1016/j.polymer.2011.09.033
  18. Cao, L., Sun, Q., Wang, H. Zhang, X., and Shi, H., "Enhanced Stress Transfer and Thermal Properties of Polyimide Composites with Covalent Functionalized Reduced Graphene Oxide," Composites Part A: Applied Science and Manufacturing, Vol. 68, 2015, pp. 140-148. https://doi.org/10.1016/j.compositesa.2014.10.007
  19. Park, O.-K., Kim, S.-G., You, N.-H., Ku, B.-C., Hui, D., Lee, J.H., "Synthesis and Properties of Iodo Functionalized Graphene Oxide/Polyimide Nanocomposites," Composites Part B: Engineering, Vol. 56, 2014, pp. 365-371. https://doi.org/10.1016/j.compositesb.2013.08.065
  20. Pham, V.H., Cuong, T.V., Nguyen-Phan, T.-D., Pham, H.D., Kim, E.J., Hur, S.H., Shin, E.W., Kim, S., and Chung, S.C., "One-step Synthesis of Superior Dispersion of Chemically Converted Graphene in Organic Solvents," Chemical Communication, Vol. 46, 2010, pp. 4375-4377. https://doi.org/10.1039/c0cc00363h
  21. Tang, L.-C., Wan, Y.-J., Yan, D., Pei, Y.-B., Zhao, L., Li, Y.-B., Wu, L.-B., Jiang, J.-X., and Lai, G.-Q., "The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites," Carbon, Vol. 60, 2013, pp. 16-27. https://doi.org/10.1016/j.carbon.2013.03.050
  22. Huang, N.-J., Zang, J., Zhang, G.-D., Guan, L.-Z., Li, S.-N., Zhao, L., and Tang, L.-C., "Efficient Interfacial Interaction for Improving Mechanical Properties of Polydimethylsiloxane Nanocomposites Filled with Low Content of Graphene Oxide Nanoribbons," RSC Advances, Vol. 7, 2017, pp. 22045-22053. https://doi.org/10.1039/C7RA02439H
  23. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., "Recent Advances in Graphene Based Polymer Composites," Progress in Polymer Science, Vol. 35, 2010, pp. 1350-1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005
  24. Lim, J., Yeo, H., Goh, M., Ku, B.-C., Kim, S.G., Lee, H.S., Park, B., and You, N.-H., "Grafting of Polyimide onto Chemicallyfunctionalized Graphene Nanosheets for Mechanically-strong Barrier Membranes," Chemistry of Materials, Vol. 27, 2015, pp. 2040-2047. https://doi.org/10.1021/cm5044254
  25. Lim, J., Yeo, H., Kim, S.G., Park, O.-K., Yu, J., Hwang, J.Y., Goh, M., Ku, B.-C., Lee, H.S., and You, N.-H., "Pyridine-funtionalized Graphene/Polyimide Nanocomposites; Mechanical, Gas Barrier, and Catalytic Effects," Composites Part B: Engineering, Vol. 114, 2017, pp. 280-288. https://doi.org/10.1016/j.compositesb.2016.12.057
  26. Yang, S.-Y., Lin, W.-N., Huang, Y.-L., Tien, H.-W., Wang, J.-Y., Ma, C.-C.M., Li, S.-M., and Wang, Y.-S., "Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites," Carbon, Vol. 49, 2011, pp. 793-803. https://doi.org/10.1016/j.carbon.2010.10.014
  27. Nam, K.-H., Yu, J., You, N.-H., Han, H., and Ku, B.-C., "Synergistic Toughening of Polymer Nanocomposites by Hydrogenbond Assisted Three-dimensional Network of Functionalized Graphene Oxide and Carbon Nanotubes," Composites Science and Technology, Vol. 149, 2017, pp. 228-234. https://doi.org/10.1016/j.compscitech.2017.06.025