DOI QR코드

DOI QR Code

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Zarei, Hassan BabaAkbar (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Parakandeh, Ali (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arani, Ali Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2017.02.13
  • 심사 : 2017.08.18
  • 발행 : 2017.11.10

초록

In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

키워드

과제정보

연구 과제 주관 기관 : University of Kashan

참고문헌

  1. Aghababaei, R, and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326, 277-289. https://doi.org/10.1016/j.jsv.2009.04.044
  2. Ahn, N. and Lee, K. (2011), "A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces", Struct. Eng. Mech., 40(4), 501-516. https://doi.org/10.12989/sem.2011.40.4.501
  3. Arefi, M. (2016), "Buckling analysis of the functionally graded sandwich rectangular plates integrated with piezoelectric layers under bi-axial loads", J. Sandw. Struct. Mater., DOI: https://doi.org/10.1177/1099636216642393.
  4. Daouadji, T.H. and Adim, B. (2017), "Mechanical behavior of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049
  5. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  6. Ghorbanpour Arani, A. and Amir, S. (2013), "Electro-thermal vibration of visco elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory", Physica B, 419, 1-6. https://doi.org/10.1016/j.physb.2013.03.010
  7. Ghorbanpour Arani, A. and Haghparast, E. (2015), "Sizedependent vibra tion of axially moving viscoelastic microplates based on sinusoidal shear deformation theory", Int. J. Appl. Mech., 9, 1750026-20.
  8. Ghorbanpour Arani, A., Jamali, M., Ghorbanpour Arani, A.H., Kolahchi, R. and Mosayyebi, M. (2016b), "Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects", J. Mech. Eng. Sci., 231(2), 387-403.
  9. Ghorbanpour Arani, A., Shajari, A.R., Amir, S. and Loghman, A. (2012), "Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid", Physica E, 45, 109-121. https://doi.org/10.1016/j.physe.2012.07.017
  10. Ghorbanpour Arani A., Haghparast E. and BabaAkbar Zarei, H. (2016a), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., 57(1), 105-126. https://doi.org/10.12989/sem.2016.57.1.105
  11. Grover, N., Singh, B.N. and Maiti, D.K. (2013), "Analytical and finite element modeling of laminated composite and sandwich plates: An assessment of a new shear deformation theory for free vibration response", Int. J. Mech. Sci., 67, 89-99. https://doi.org/10.1016/j.ijmecsci.2012.12.010
  12. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
  13. Hosseini-Hashemi, Sh., Kermajani, M. and Nazemnezhad, R. (2015), "An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory", Eur. J. Mech. A Solid., 51, 29-43. https://doi.org/10.1016/j.euromechsol.2014.11.005
  14. Hosseini Hashemi, Sh., Es'haghi, M. and Karimi, M. (2010), "Closed-form vibration analysis of thick annular functionally graded plates with integrated piezoelectric layers", Int. J. Mech. Sci., 52, 410-428. https://doi.org/10.1016/j.ijmecsci.2009.10.016
  15. Kavalur, P., Jeyaraj, P. and Ravindra Babu, G. (2014), "Static behavior of visco-elastic sandwich plate with nano composite facing under mechanical load", Procedia Mater. Sci., 5, 1376-1384. https://doi.org/10.1016/j.mspro.2014.07.455
  16. Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Eur. J. Mech. A Solid., 31, 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003
  17. Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling and postbuckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation", Arch. Appl. Mech., 82, 891-905. https://doi.org/10.1007/s00419-011-0599-8
  18. Kraus, J. (1984), Electromagnetics, McGrawHill, Inc., USA.
  19. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015a), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019
  20. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015b), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", Int. J. Mech. Sci., 99, 206-217, 2015.
  21. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2016), "Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method", Compos. Part B, 84, 211-221. https://doi.org/10.1016/j.compositesb.2015.08.081
  22. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  23. Liew, K.M., Zhang, Y. and Zhang, L.W. (2017), "Nonlocal elasticity theory for graphene modeling and simulation: prospects and challenges", J. Model. Mech. Mater., DOI: https://doi.org/10.1515/jmmm-2016-0159.
  24. Liu, M., Cheng, Y. and Liu, J. (2015), "High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core", Compos. Part B, 72, 97-107. https://doi.org/10.1016/j.compositesb.2014.11.037
  25. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solid. Struct., 49, 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
  26. Marynowski, K. (2012), "Dynamic analysis of an axially moving sandwich beam with viscoelastic core", Compos. Struct., 94, 2931-2936. https://doi.org/10.1016/j.compstruct.2012.03.040
  27. Mohammadimehr, M., Mohandes, M. and Moradi, M. (2016a), "Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory", J. Vib. Control, 22(7), 1790-1807. https://doi.org/10.1177/1077546314544513
  28. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B, 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030
  29. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016b), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513
  30. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
  31. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016c), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of doublecoupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
  32. Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016d), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature- dependent material properties under hydrothermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
  33. Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007
  34. Nayak, A.K., Moy, S.S.J. and Shenoi, R.A. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higherorder theory", Compos. Part B, 33, 505-519. https://doi.org/10.1016/S1359-8368(02)00035-5
  35. Pietrzakowski, M. (2008), "Piezoelectric control of composite plate vibration: Effect of electric potential distribution", Comput. Struct., 86, 948-954. https://doi.org/10.1016/j.compstruc.2007.04.023
  36. Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for static analysis of laminated composite and sandwich plates", Aerosp. Sci. Technol., 35, 15-28. https://doi.org/10.1016/j.ast.2014.03.001
  37. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007
  38. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2017), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/SEM.2016.60.4.547
  39. Viet, N.V., Wang, Q. and Kuo, W.S. (2017), "A studying on load transfer in carbon nanotube/epoxy composites under tension", J. Model. Mech. Mater., DOI: https://doi.org/10.1515/jmmm-2016-0153.
  40. Wang, Z.X and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Compos. Part B, 43, 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
  41. Wang, T., Sokolinsky, V., Rajaram, S. and Nutt, S.R. (2008), "Consistent higher-order free vibration analysis of composite sandwich plates", Compos. Struct., 82, 609-621. https://doi.org/10.1016/j.compstruct.2007.02.009
  42. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42, 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
  43. Zenkour, A.M. and Alghamdi, N.A. (2010), "Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads", Mech. Adv. Mater. Struct., 17, 419-432. https://doi.org/10.1080/15376494.2010.483323
  44. Zhang, L.W. (2017a), "An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform", Eng. Anal. Bound. Elem., 77, 10-25. https://doi.org/10.1016/j.enganabound.2017.01.004
  45. Zhang, L.W. (2017c), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116
  46. Zhang, L.W., Cui, W.C. and Liew, K.M. (2015a), "Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges", Int. J. Mech. Sci., 103, 9-21. https://doi.org/10.1016/j.ijmecsci.2015.08.021
  47. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015b), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B, 75, 36-46.
  48. Zhang, L.W., Li, D.M. and Liew, K.M. (2015c), "An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method", Eng. Anal. Bound. Elem., 54, 39-46. https://doi.org/10.1016/j.enganabound.2015.01.007
  49. Zhang, L.W. and Liew, K.M. (2015a), "Geometrically nonlinear large deformation analysis of functionally graded carbon nanotube reinforced composite straight-sided quadrilateral plates", Comput. Meth. Appl. Mech. Eng., 295, 219-239. https://doi.org/10.1016/j.cma.2015.07.006
  50. Zhang, L.W. and Liew, K.M. (2015b), "Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 132, 974-993. https://doi.org/10.1016/j.compstruct.2015.07.017
  51. Zhang, L.W. and Liew, K.M. (2016a), "Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 138, 40-51. https://doi.org/10.1016/j.compstruct.2015.11.031
  52. Zhang, L.W. and Liew, K.M. (2016b), "Element-free geometrically nonlinear analysis of quadrilateral functionally graded material plates with internal column supports", Compos. Struct., 147, 99-110. https://doi.org/10.1016/j.compstruct.2016.03.034
  53. Zhang, L.W., Liew, K.M. and Jiang, Z. (2016a), "An element-free analysis of CNT-reinforced composite plates with column supports and elastically restrained edges under large deformation", Compos. Part B, 95, 18-28. https://doi.org/10.1016/j.compositesb.2016.03.078
  54. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016b), "Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory", Compos. Struct., 152, 418-431. https://doi.org/10.1016/j.compstruct.2016.05.040
  55. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016c), "Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates", Comput. Meth. Appl. Mech. Eng., 300, 593-610. https://doi.org/10.1016/j.cma.2015.11.030
  56. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016d), "Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression", Comput. Meth. Appl. Mech. Eng., 298, 1-28. https://doi.org/10.1016/j.cma.2015.09.016
  57. Zhang, L.W., Liu, W.H. and Liew, K.M. (2016e), "Geometrically nonlinear large deformation analysis of triangular CNTreinforced composite plates", Int. J. Nonlin. Mech., 86, 122-132. https://doi.org/10.1016/j.ijnonlinmec.2016.08.004
  58. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015d), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLSRitz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011
  59. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015e), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138
  60. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015f), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138
  61. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016f), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Meth. Appl. Mech. Eng., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029
  62. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016g), "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Compos. Part B, 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044
  63. Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. Liew, K.M. (2017), "Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads", Comput. Meth. Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020
  64. Zhang, L.W., Xiao, L.N., Zou, G.L. and Liew, K.M. (2016h), "Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method", Compos. Struct., 148, 144-154. https://doi.org/10.1016/j.compstruct.2016.04.006
  65. Zhang, L.W., Zhang, Y., Zou, G.L. and Liew, K.M. (2016i), "Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method", Compos. Struct., 149, 247-260. https://doi.org/10.1016/j.compstruct.2016.04.019
  66. Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043
  67. Zhang. L.W. (2017b), "Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports", J. Model. Mech. Mater., DOI: https://doi.org/10.1515/jmmm-2016-0154.
  68. Zhu, P., Zhang, L.W. and Liew, K.M. (2014), "Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation", Compos. Struct., 107, 298-314. https://doi.org/10.1016/j.compstruct.2013.08.001
  69. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010

피인용 문헌

  1. Elasticity Solutions for Sandwich Arches considering Permeation Effect of Adhesive vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/7358930
  2. Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2017, https://doi.org/10.12989/cac.2021.28.3.259