DOI QR코드

DOI QR Code

BB-BC optimization algorithm for structural damage detection using measured acceleration responses

  • Huang, J.L. (Department of Applied Mechanics, Sun Yat-sen University) ;
  • Lu, Z.R. (Department of Applied Mechanics, Sun Yat-sen University)
  • 투고 : 2016.07.13
  • 심사 : 2017.08.18
  • 발행 : 2017.11.10

초록

This study presents the Big Bang and Big Crunch (BB-BC) optimization algorithm for detection of structure damage in large severity. Local damage is represented by a perturbation in the elemental stiffness parameter of the structural finite element model. A nonlinear objective function is established by minimizing the discrepancies between the measured and calculated acceleration responses (AR) of the structure. The BB-BC algorithm is utilized to solve the objective function, which can localize the damage position and obtain the severity of the damage efficiently. Numerical simulations have been conducted to identify both single and multiple structural damages for beam, plate and European Space Agency Structures. The present approach gives accurate identification results with artificial measurement noise.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Guangdong Province Natural Science Foundation

참고문헌

  1. El-Bakari, A., Khamlichi, A., Jacquelin, E. and Dkiouak, R. (2014), "Assessing impact force localization by using a particle swarm", J. Sound Vib., 333, 1554-1561 https://doi.org/10.1016/j.jsv.2013.11.032
  2. Baghmisheh, M.V., Peimani, M., Sadeghi, M.H., Ettefagh, M.M. and Tabrizi, A.F. (2012), "A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams", Appl. Soft Comput., 12, 2217-2226 https://doi.org/10.1016/j.asoc.2012.03.030
  3. Cattarius, J. and Inman, D. J. (1997), "Time domain anaylysis for damage detection in smart structures", Mech. Syst. Signal Pr., 11(3), 409-423 https://doi.org/10.1006/mssp.1996.0086
  4. Erol, K.O. and Eksin, I. (2006), "A new optimization method: Big Bang-Big Crunch", Adv. Eng.Softw., 37, 106-111 https://doi.org/10.1016/j.advengsoft.2005.04.005
  5. Fu, Y.Z., Liu, J.K., Wei, Z.T. and Lu, Z.R. (2016) "A two-step approach for damage identification in plates", J. Vib. Control, 22(13), 3018-3031 https://doi.org/10.1177/1077546314557689
  6. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", IEEE International Conference on Neural Networks, 1942-1948
  7. Koh, C.G., Hong, B. and Liaw, C.Y. (2000), "Parameter identification of large structural systems in time domain", J. Struct. Eng., ASCE, 126(8), 957-963 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(957)
  8. Kwon, Y.D., Kwon, H.W., Kim, W. and Yeo, S.D. (2008), "Structural damage detection in continuum structures using successive zooming genetic algorithm", Struct. Eng. Mech., 30(2), 135-146 https://doi.org/10.12989/sem.2008.30.2.135
  9. Law, S.S., Bu, J.Q., Zhu, X.Q. and Chan, S. L. (2006), "Vehicle condition surveillance on continuous bridges based on response sensitivity", J. Eng. Mech., ASCE, 132(1), 78-86 https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(78)
  10. Li, H., Lu, Z.R. and Liu, J.K. (2016), "Structural damage identification based on residual force vector and response sensitivity analysis", J. Vib. Control, 22(11), 2759-2770 https://doi.org/10.1177/1077546314549822
  11. Li, S. and Lu, Z.R. (2015), "Multi-swarm fruit fly optimization algorithm for structural damage identification", Struct. Eng. Mech., 56(3), 409-422 https://doi.org/10.12989/sem.2015.56.3.409
  12. Lu, Z.R. and Law, S.S. (2007), "Features of dynamic response sensitivity and its application in damage detection", J. Sound Vib., 303(1-2), 305-329 https://doi.org/10.1016/j.jsv.2007.01.021
  13. Lu, Z.R. and Liu, J.K. (2011), "Identification of both structural damaged in bridge deck and vehicular parmeters using measured dynamic responses", Comput. Struct., 89, 1397-1405 https://doi.org/10.1016/j.compstruc.2011.03.008
  14. Majumder, L. and Manohar, C.S. (2003), "A time domain approach for damage detection in beam structures using vibration data with a moving oscillator as an excitation source", J. Sound Vib., 268, 699-716 https://doi.org/10.1016/S0022-460X(02)01555-9
  15. Mehrjoo, M., Khaji, N. and Mohsen, G.A. (2013), "Application of genetic algorithm in crack detection of beam-like structures using a new cracked Euler-Bernoulli beam element", Appl. Soft Comput., 13, 867-880 https://doi.org/10.1016/j.asoc.2012.09.014
  16. Miguel, F.F.L. and Lopez, R.H. (2013), "A hybrid approach for damage detection of structures under operational conditions", J. Sound Vib., 332, 4241-4260 https://doi.org/10.1016/j.jsv.2013.03.017
  17. Mohan, S.C., Maiti, D.K. and Maity, D. (2013), "Structure damage assessment using FRF employing particle swarm optimization", Appl. Math. Comput., 219, 10387-10400
  18. Ratcliffe, C.P. (1997), "Damage detection using a modified Laplacian operator on mode shape data", J. Sound Vib., 204, 505-517 https://doi.org/10.1006/jsvi.1997.0961
  19. Sung, S.H., Koo, K.Y. and Jung, H.J. (2014), "Modal flexibilitybased damage detection of cantilever beam-type structures using baseline modification", J. Sound Vib., 333, 4123-4138 https://doi.org/10.1016/j.jsv.2014.04.056
  20. Tab, Z., Afshri, E. and Morteza, H.B. (2013), "A new damage detection method: Big Bang-Big Cruch(BB-BC) algorithm", Shock Vib., 20, 633-648 https://doi.org/10.1155/2013/625914
  21. Vakil-Baghmisheh, M.T., Peimani, M., Sadeghi, M.H. and Ettefagh, M.M. (2008), "Crack detection in Beam-like structures using genetic algorithms", Appl. Soft Comput., 8, 1150-1160 https://doi.org/10.1016/j.asoc.2007.10.003
  22. Xu, H.J., Ding, Z.H., Lu, Z.R. and Liu, J.K. (2015), "Structural damage detection based on Chaotic Artificial Bee Colony algorithm", Struct. Eng. Mech., 55(6), 1223-1235 https://doi.org/10.12989/sem.2015.55.6.1223
  23. Yang Q.W. (2011), "A new damage identification method based on structural flexibility disassembly", J. Vib. Control, 17(7), 1000-1008 https://doi.org/10.1177/1077546309360052
  24. Yang, C. and Adams, D.E. (2014), "A damage identification technique based on embedded sensitivity analysis and optimization processes", J. Sound Vib., 333, 3109-3119 https://doi.org/10.1016/j.jsv.2014.02.026
  25. Yi, T.H., Zhou, G.D., Li, H.N. and Zhang, X.D. (2015), "Optimal sensor placement for health monitoring of high-rise structure based on collaborative-climb monkey algorithm", Struct. Eng. Mech., 54(2), 305-317 https://doi.org/10.12989/sem.2015.54.2.305