DOI QR코드

DOI QR Code

Cognitive process and cognitive load about the concept image of triangle altitude in visual image

시각적 이미지 안에서 삼각형 높이의 개념 이미지에 대한 인지적 처리과정과 인지적 부하

  • Lee, Mi Jin (Graduate School of Korea National University of Education) ;
  • Lee, Kwangho (Korea National University of Education)
  • Received : 2017.10.17
  • Accepted : 2017.10.30
  • Published : 2017.10.31

Abstract

In the process of finding the triangle height, 26 students in the 6th grade were surveyed to understand the students' triangle height through the eye movement data and to investigate the cognitive load of the students. As a result, the correctness rate of the pre-test was significantly increased in the post-test, and the frequency and retention of gaze data were smaller in the post-test than in the AOI of each question. The Participants's subjective cognitive load indicated that it was more difficult to understand the concept of rotated triangles compared with upright triangles that were parallel to the ground. More frequent and more retentions in the eye-tracking data were detected in the right triangles and acute triangles by rotating configuration. Eye movement data show that eye tracking technology can provide an objective measure of students' cognitive load for feedback on instructional design.

삼각형 높이를 찾는 과정에서 눈 움직임 데이터를 통해 학생들의 삼각형 높이에 대한 이해와 그에 대한 삼각형 유형별, 배치별 인지부하 알아보고자 하였다. 6학년 26명 학생들을 대상으로 콘텐츠를 활용한 수업을 진행하고, 사전 사후검사를 실시하였다. 그 결과 삼각형 높이에 대한 삼각형 유형별, 배치별 문항에서 사전 검사에 대해 사후검사에서 정답률이 크게 상승하였으며, 아울러 각 문항별 AOI(Area of Interest)에서 시선 데이터의 빈도(FC)와 머무름(FD)이 사후검사에서 더 적게 나타났다. 주관적 인지부하는 밑변이 지면에 평행한 삼각형 보다는 회전된 삼각형 배치에서 더 높게 나타났으며, 시선 추적 데이터에서는 직각삼각형과 예각삼각형의 회전 배치된 쪽에서 더 많은 빈도와 더 많은 머무름이 감지되었다. 이를 통해 시선추적 기술은 교수설계의 피드백을 위한 학생들의 인지적 부하의 객관적인 측정을 제공할 수 있음을 알 수 있었다.

Keywords

References

  1. 권유미.안병곤 (2005). 초등 수학 교과서에 사용되고 있는 수학 용어에 대한 학생들의 이해도 분석. 한국초등수학교육학회지, 9(2), 137-159. (Kwon, Y. & Ahn, B. (2005). The analysis on students' understanding of mathematics terms being used in elementary school mathematics textbooks-Centering on the field of geometry. Korea Society of Elementary Mathematics Education, 9(2), 137-159.)
  2. 이광호.이현주.이주영.송윤오(2014). 평면도형 높이에 대한 학생 이해도와 오류 유형. 한국교원대학교 뇌기반교육연구소, 4(2), 46-56. (Lee, K.; Lee, H.; Lee, J., & Song, Y. (2014). Understanding and error types of the height concept in plane figures. Brain & Learning, 4(2), 46-56)
  3. 임승현, 박영희 (2011). 초등학교 6학년 학생들의 도형의 개념 이해에 대한 연구. 한국초등수학교육학회지, 15(1), 141-159. (Im, S. H., & Park, Y. H. (2011). A study on the understanding of height concept of figures of sixth grade students of elementary schools. Korea Society of Elementary Mathematics Education, 15(1), 141-159.)
  4. Epelboim, J., & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 41(1), 1561-1574. https://doi.org/10.1016/S0042-6989(00)00256-X
  5. Grant, E. R. & Spivey, M. J. (2003). Eye movements and problem solving: Guiding attention guides thought. Psychological Science, 14(5), 462-466. https://doi.org/10.1111/1467-9280.02454
  6. Groner, R., & Groner, M. (1982). Towards a hypotheti-co-deductive theory of cognitive activity. In R. Groner, & P. Fraisse. (Eds.), Cognition and eye movements (pp. 100-121). Amsterdam: North Holland.
  7. Groner, R., & Groner, M. (1983). A stochastic hypothe-sis testing model for multi-term series problems, based on eye fixations. In R. Groner, C. Menz, D. F.Fisher & R. A. Monty (Eds.), Eye movements and psychological functions: International views (pp. 257-274). Hillsdale, N.J.: Lawrence Erlbaum.
  8. Gutierrez, A., & Jaime, A. (1999). Preservice primary teachers' understanding of the concept of altitude of a triangle. Journal of Mathematics Teacher Education, 2, 253-275. https://doi.org/10.1023/A:1009900719800
  9. Hart, S. G. & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Human Mental Workload, 1, 39-183.
  10. Hegarty, M. & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32(6), 717-742. https://doi.org/10.1006/jmla.1993.1036
  11. Hegarty, M.; Mayer, R. E. & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), 18-32. https://doi.org/10.1037/0022-0663.87.1.18
  12. Holm, A.; Lukander, K.; Korpela, J.; Sallinen, M. & Muller, K. M. (2009). Estimating brain load from the EEG. The Scientific World Journal, 9, 639. https://doi.org/10.1100/tsw.2009.83
  13. Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137. https://doi.org/10.1037/0033-295X.92.2.137
  14. Knoblich, G.; Ohlsson, S., & Raney, G. E. (2001). An eye movement study of insight problem solving. Memory & Cognition, 29(7), 1000-1009. https://doi.org/10.3758/BF03195762
  15. Koorner, C. (2011). Eye movements reveal distinct search and reasoning processes in comprehension of complex graphs. Applied Cognitive Psychology, 25, 893-905. https://doi.org/10.1002/acp.1766
  16. Lin, J. J. H., & Lin, S. S. J. (2013). Cognitive load for configuration comprehension in computer-supported geometry problem solving: An eye movement per-spective. International Journal of Science and Math-ematics Education, 12, 605-627.
  17. Lin, J. J. H., & Lin, S. S. J. (2014). Tracking eye movements when solving geometry problems with handwriting devices. Journal of Eye Movement Research, 7(1), 1-15.
  18. Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20(2), 167-171. https://doi.org/10.1016/j.learninstruc.2009.02.012
  19. Paas, F., Renkl, A. & Sweller, J. (2003a). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4. https://doi.org/10.1207/S15326985EP3801_1
  20. Paas, F.; Tuovinen, J. E.; Tabbers, H. & Van Gerven, P. W. M. (2003b). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63-71. https://doi.org/10.1207/S15326985EP3801_8
  21. Paas, F. & van Merrienboer, J. J. G. (2006). Optimising worked example instruction: Different ways to increase germane cognitive load. Learning and Instruction, 16(2), 87-91. https://doi.org/10.1016/j.learninstruc.2006.02.004
  22. Park, B.; Moreno, R.; Seufert, T. & Brunken, R. (2010). Does cognitive load moderate the seductive details effect? A multimedia study. Computers in Human Behavior.
  23. Plass, J. L., Moreno, R. & Brunken, R. (2010). Cognitive load theory. Cambridge University Press.
  24. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422. https://doi.org/10.1037/0033-2909.124.3.372
  25. Sweller, J. Ayres, P., & Kalyuga, S. (2011). Cognitive load theory: Springer.
  26. Sweller, J. & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8(4), 351-362. https://doi.org/10.1207/s1532690xci0804_5
  27. van Gog, T.; Paas, F.; van Merrienboer, J. J. G., & Witte, P. (2005). Uncovering the problem-solving process: Cued retrospective reporting versus concurrent and retrospective reporting. Journal of Experimental Psychology: Applied, 11(4), 237-244. https://doi.org/10.1037/1076-898X.11.4.237
  28. Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305, 199-216. https://doi.org/10.1080/0020739830140305
  29. Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall(Ed.), Advanced mathematical thinking (pp. 65-81). Dordrecht, The Netherlands: Kluwer.
  30. Wilson, P. S. (1988, November). Variation in student geometric concepts. In M. J. Behr, C. B. Lacampagne, & M. M. Wheeler (Eds.) , Proceedings of the 10th PME-NA conference (pp.199-205). Dekalb, IL;Northern illinois University.
  31. Wilson, P .S. (1990). Inconsistent ideas related to definitions and examples. Focus on Learning Problems in. Mathematics, 12(3/4), 31-47.