DOI QR코드

DOI QR Code

초등학생의 수학 학습에 대한 정의(情意)적 특성 분석

Analysis of Affective Factors in Mathematics Learning of Elementary School Students

  • Do, Joowon (Department of Mathematics Education, Graduate School of Education, Seoul National University of Education) ;
  • Paik, Suckyoon (Department of Mathematics Education, Seoul National University of Education)
  • 투고 : 2017.10.07
  • 심사 : 2017.10.30
  • 발행 : 2017.10.31

초록

본 연구에서는 초등학생이 수학 학습과 관련하여 정의적인 면에서 갖는 특성을 파악하기 위하여 Hannula(2012)가 수학 학습자 개인의 정의적 요인 분석을 위해 개발한 설문지를 적용하였다. 설문 조사 결과를 조사 대상 학생의 성취 수준, 학년, 성별에 따라 기술통계 및 일원분산의 방법으로 분석하였다. 또한. 회귀분석을 통하여 각 정의적 요인들 간의 상관관계를 분석하였다. 한편, 이상의 연구 결과를 본 연구에서 사용한 동일 설문지로 이미 핀란드와 칠레의 초등학생을 대상으로 분석한 연구(Tuohilampi et al., 2013; Tuohilampi et al., 2014b) 결과와 비교하였다. 그 결과 본 연구에서 조사한 초등학생의 수학 성취도와 학년 변인이 정의적 요인과 밀접한 관계를 보이고 있으며, 특히 정의적 요인의 인지와 동기 측면에 있어서 상대적으로 보다 높은 관계성을 보이는 것으로 나타났다. 이상 우리나라 초등학생에 대한 연구 결과와 우리나라, 칠레, 핀란드 3개국의 초등학생들 사이에 나타나는 수학 학습의 정의적 특성 면에서 보이는 차이점은 초등교사로 하여금 정의적인 면에서의 수학 수업 개선에 필요한 방법론적 고찰에 도움이 될 것으로 생각한다.

In order to understand the characteristics of affect of elementary school students in this study, we used a questionnaire developed by Hannula (2012) to measure elementary students' beliefs and affective factors about mathematics based on the emotional, cognitive, and motivational dimensions of the affect of personal level. Statistical analysis and one-way ANOVA were conducted to identify the characteristics of elementary school students' beliefs and affective factors about mathematics according to mathematics achievement level, grade level, and gender. Regression analysis was performed to analyze the correlation between the factors. The results of this study are compared with the results of the previous study which used comparative study of elementary school students in Finland and Chile using the questionnaire used in this study.

키워드

참고문헌

  1. 권미연.전평국 (1999). 초, 중학생들의 수학적 신념 형성의 요인 분석 - 수학 교실의 사회적 규범을 중심으로. 한국수학교육학회지 시리즈 E <수학교육 논문집>, 8, 189-207. (Kwon, Mi yeon and Jeon, Pyung Kook (1999). Analysis of factors of mathematical belief formation in middle school students - Focusing on the social norms of the classroom. E: Communications of Mathematical Education 8, 189-207.)
  2. 김도연.김홍찬 (2013). 중학교 3학년 학생들의 "단원별 이해도에 대한 신념"과 학업성취도와의 관계 및 수학적 개념, 수학적 절차에 대한 이해 정도 분석. 한국수학교육학회지 시리즈 E <수학교육 논문집>, 27(4), 499-521. (Kim. Do Yeon and Kim, Hong Chan (2013). Analysis on the Relationship between the 3ed Grade Middle School Students' BElief about Understanding and Academic Achievement, Mathematical Concepts, Maathematical Procedures. E: Communications of Mathematical Education 27(4), 499-521.)
  3. 김부미 (2011). 수학 문제해결 신념의 측정도구 개발. 교육과정평가연구 14(1), 229-255. (Kim, Bumi (2011). Instrument Development for Mathematical Problem-Solving Belief. The Journal of Curriculumand Evaluation 14(1), 229-255)
  4. 김부미 (2012). 우리나라 중, 고등학생의 수학적 신념 측정 및 특성 분석. 수학교육학연구 22(2), 229-259. (Kim, Bumi (2012). Instrument Development and Analysis of Secondary Students' Mathematical Beliefs. Journal of Educational Research in Mathematics 22(2), 229-259)
  5. 안윤경.김선희 (2011). 수학 문제 해결 과정에서 학생들의 감정 변화에 대한 사례 연구. 수학교육학연구 21(3), 295-311. (Ahn, Yoon Kyeong, Kim, Sun Hee (2011). The Variation of Emotions in Mathematical Problem Solving. The Journal of Curriculum and Evaluation 14(1), 229-255.)
  6. 이종희.김선희.김수진.김기연.김부미.윤수철. 김윤민 (2011). 수학 학습에 대한 정의적 성취 검사 도구 개발 및 검증. 한국수학교육학회지 시리즈 A <수학교육>, 50(2), 247-261. (Lee, Chong hee, Kim, Sun Hee, Kim, Soo jin, Kim, Ki yeon, Kim, Bu mi, Tun, Soo cheol, Kim, and Yun min (2011). Development and verification of an affective inventory in Mathematical Learning. A: The Mathematical Education 50(2), 247-261.)
  7. Cobb, P., Yackel E., & Wood, T. (1989). Young children's emotional acts while engaged in mathematical problem solving. In D. B. McLeod & V. M. Adams (Eds.), Affect and mathematical problem solving: A new perspective, 118-148. New York: Springer-Verlag.
  8. DeBellis, V. A., & Goldin, G. A. (1997). The affective domain in mathematical problem-solving. In: E. Pekhonen (Ed.) Proceedings of the PME 21, Vol. 2, 209-216.
  9. DeBellis, V. A., & Goldin, G. A. (2006). Affect and Meta-affect in Mathematical Problem Solving: A Representational Perspective. Educational Studies in Mathematics, 63(2), 131-147. https://doi.org/10.1007/s10649-006-9026-4
  10. Furinghetti, F. & Pehkonen, E. (2002). Rethinking characterizations of beliefs. In G. C. Leder, E. Pehkonen, & G. Torner (Eds.), Beliefs: A Hidden Variable in Mathematics education? 39-57. Dordrecht: Kluwer.
  11. Giaconi, V., Varas, M. L., Tuohilampi, L., & Hannula, M. (2016). Affective Factors and Beliefs About Mathematics of Young Chilean Children: Understanding Cultural Characteristics. In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds.), Posing and Solving Mathematical Problems, 37-51. AG Switzerland: Springer.
  12. Goldin, G. A . (2002). Affect, meta-affect, and mathematical belief structures. In G. C. Leder, E. Pehkonen, & G. Torner (Eds.), Beliefs: A Hidden Variable in Mathematics education? 59-72. Dordrecht: Kluwer.
  13. Hannula, M. S. (2011). The structure and dynamics of affect in mathematical thinking and learning. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of Seventh Congress of the European Society for Research in Mathematics Education, 34-60. Rzeszow, Poland: ERME.
  14. Hannula, M. S. (2012). Exploring new dimensions of mathematics-related affect: Embodied and social theories. Research in Mathematics Education, 14(2), 137-161. https://doi.org/10.1080/14794802.2012.694281
  15. Hannula, M. S. & Laakso, J. (2011). The structure of mathematics related beliefs, attitudes and motivation among Finnish grade 4 and grade 8 students. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 3, 9-16. Ankara, Turkey: PME.
  16. Hart, L. E. (1989). Describing the affective domain: saying shat we mean. In D. B. McLeod & V. M. Adams (Eds.), Affect and mathematical problem solving. A new perspective, 37-45. New York: Springer-Verlag.
  17. Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). Self-confidence, interest, beliefs, and metacognition: Key influences on problemsolving behavior. In D. B. McLeod & V. M. Adams (Eds.), Affect and mathematical problem solving: A new perspective, 75-88. New York: Springer-Verlag.
  18. Malmivuori, M. L. (2006). Affect and self-regulation. Educational Studies in Mathematics, 63, 149-164. https://doi.org/10.1007/s10649-006-9022-8
  19. McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning, 575-596. New York: Macmillan.
  20. McLeod, D. B. (1994). Research on affect and mathematics learning in the JRME: 1970 to the present. Journal for Research in Mathematics Education, 25(6), 637-647. https://doi.org/10.2307/749576
  21. Moscucci. M. (2010). Why is there not enough fuss about affect and meta-affect among mathematics teacher? Proceedings of the CERME-6. 1811-1820
  22. Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Retrieved from Boston College, TIMSS & PIRLS International Student Center website:http://timssandpirls.bc.edu/timss2015/international-results/download-center/
  23. OECD. (2013). PISA 2012 assessment and analytical framework: mathematics, reading, science, problem solving and financial literacy. Paris: OECD.
  24. Op't Eynde, P., De Corte, E., & Verschaffel, L. (2002). Framing students' Mathematics-related beliefs: A quest for conceptual clarity & a comprehensive categorization. In G. C. Leder, E. Pehkonen, & G. Torner (Eds.), Beliefs: A Hidden Variable in Mathematics education? 13-37. Dordrecht: Kluwer.
  25. Schoenfeld, A. H. (1983). Beyond the purely cognitive: Belief systems, social cognitions, and metacognitions as driving forces in intellectual performance. Cognitive Science, 7, 329-363. https://doi.org/10.1207/s15516709cog0704_3
  26. Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.
  27. Silver, E. A. (1987). Foundations of cognitive theory and research for mathematics problem-solving instruction. In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education, 33-60. NJ: Hillsdale.
  28. Tuohilampi, L., Hannula, M. S., Giaconi, V., Laine, A., and Naveri, L. (2013). Comparing the Structures of 3rd Graders' Mathematics-related Affect in Chile and Finland. In Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education(CERME8). Antalya: ERME.
  29. Tuohilampi, L., Hannula, M. S., & Varas, L. (2014a). 9-year old students' self-related belief structures regarding mathematics: a comparison between Finland and Chile. In M. Hannula, P. Portaankorva-Koivisto, A. Laine, & L. Naveri (Eds.), Proceedings of the 18th conference of the mathematical views, 15-26. Helsinki, Finland: MAVI.
  30. Tuohilampi, L., Hannula, M. S., Varas, L., Giaconi, V., Laine, A., Naveri, L., & Nevado, L. S. I. (2014b). Challenging the Western approach to cultural comparisons: Young pupils' affective structures regarding mathematics in Finland and Chile. International Journal of Science and Mathematics Education, 13(6), 1625-1648. https://doi.org/10.1007/s10763-014-9562-9
  31. Tuohilampi, L., Laine, A., Hannula, M. S., & Varas. L. (2016). A Comparative Study of Finland and Chile: the Culture-Dependent Significance of the Individual and Interindividual Levels of the Mathematics-Related Affect. International Journal of Science and Mathematics Education, 14, 1093-1111. https://doi.org/10.1007/s10763-015-9639-0
  32. Yildrim, A. K. (2006). Description of students' beliefs on their problem solving skills. Bogazici University, Istanbul, Turkey.